

Guide for Debian Maintainers

Osamu Aoki

October 1, 2024

Guide for Debian Maintainers
by Osamu Aoki

Copyright © 2014-2024 Osamu Aoki

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the ”Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

This guide was made using the following previous documents as its reference:

• “Making a Debian Package (AKA the Debmake Manual)”, copyright © 1997 Jaldhar Vyas.

• “The New-Maintainer’s Debian Packaging Howto”, copyright © 1997 Will Lowe.

• “Debian New Maintainers’ Guide”, copyright © 1998-2002 Josip Rodin, 2005-2017 Osamu Aoki, 2010
Craig Small, and 2010 Raphaël Hertzog.

The latest version of this guide should be available:

• in the debmake-doc package and

• at the Debian Documentation web site.

i

https://tracker.debian.org/pkg/debmake-doc
https://www.debian.org/doc/devel-manuals

Contents

1 Preface 1

2 Overview 3

3 Prerequisites 5
3.1 People around Debian . 5
3.2 How to contribute . 5
3.3 Social dynamics of Debian . 6
3.4 Technical reminders . 6
3.5 Debian documentation . 7
3.6 Help resources . 8
3.7 Archive situation . 8
3.8 Contribution approaches . 9
3.9 Novice contributor and maintainer . 10

4 Tool Setups 12
4.1 Email setup . 12
4.2 mc setup . 12
4.3 git setup . 13
4.4 quilt setup . 13
4.5 devscripts setup . 14
4.6 sbuild setup . 14
4.7 Persistent chroot setup . 16
4.8 gbp setup . 16
4.9 HTTP proxy . 16
4.10 Private Debian repository . 17
4.11 Virtual machines . 17
4.12 Local network with virtual machines . 17

5 Simple packaging 18
5.1 Packaging tarball . 18
5.2 Big picture . 18
5.3 What is debmake? . 19
5.4 What is debuild? . 20
5.5 Step 1: Get the upstream source . 20
5.6 Step 2: Generate template files with debmake . 21
5.7 Step 3: Modification to the template files . 25
5.8 Step 4: Building package with debuild . 27
5.9 Step 3 (alternatives): Modification to the upstream source . 30
5.10 Patch by “diff -u” approach . 30
5.11 Patch by dquilt approach . 31
5.12 Patch by “dpkg-source --auto-commit” approach . 33

6 Basics for packaging 36
6.1 Packaging workflow . 36
6.2 debhelper package . 38
6.3 Package name and version . 39
6.4 Native Debian package . 40
6.5 debian/rules file . 40
6.6 debian/control file . 41
6.7 debian/changelog file . 42
6.8 debian/copyright file . 42
6.9 debian/patches/* files . 43
6.10 debian/source/include-binaries file . 44

ii

CONTENTS

6.11 debian/watch file . 44
6.12 debian/upstream/signing-key.asc file . 44
6.13 debian/salsa-ci.yml file . 45
6.14 Other debian/* files . 45

7 Sanitization of the source 50
7.1 Fix with Files-Excluded . 50
7.2 Fix with “debian/rules clean” . 50
7.3 Fix with extend-diff-ignore . 51
7.4 Fix with tar-ignore . 51
7.5 Fix with “git clean -dfx” . 51

8 More on packaging 53
8.1 Package customization . 53
8.2 Customized debian/rules . 53
8.3 Variables for debian/rules . 54
8.4 New upstream release . 54
8.5 Manage patch queue with dquilt . 55
8.6 Build commands . 55
8.7 Note on sbuild . 55
8.8 Special build cases . 56
8.9 Upload orig.tar.gz . 56
8.10 Skipped uploads . 57
8.11 Bug reports . 57

9 Advanced packaging 58
9.1 Historical perspective . 58
9.2 Current trends . 58
9.3 Note on build system . 59
9.4 Continuous integration . 59
9.5 Bootstrapping . 59
9.6 Compiler hardening . 60
9.7 Reproducible build . 60
9.8 Substvar . 60
9.9 Library package . 61
9.10 Multiarch . 61
9.11 Split of a Debian binary package . 62
9.12 Package split scenario and examples . 62
9.13 Multiarch library path . 62
9.14 Multiarch header file path . 63
9.15 Multiarch *.pc file path . 63
9.16 Library symbols . 63
9.17 Library package name . 65
9.18 Library transition . 66
9.19 binNMU safe . 66
9.20 Debugging information . 66
9.21 -dbgsym package . 67
9.22 debconf . 67

10 Packaging with git 68
10.1 Salsa repository . 69
10.2 Salsa account setup . 69
10.3 Salsa CI service . 69
10.4 Branch names . 69
10.5 Patch unapplied Git repository . 70
10.6 Patch applied Git repository . 70
10.7 Note on gbp . 71
10.8 Note on dgit . 72
10.9 Patch by “gbp-pq” approach . 72

iii

CONTENTS

10.10Manage patch queue with gbp-pq . 72
10.11gbp import-dscs --debsnap . 73
10.12Note on dgit-maint-debrebase workflow . 73
10.13Quasi-native Debian packaging . 74

11 Tips 75
11.1 Build under UTF-8 . 75
11.2 UTF-8 conversion . 75
11.3 Hints for Debugging . 75

12 Tool usages 77
12.1 debdiff . 77
12.2 dget . 77
12.3 mk-origtargz . 78
12.4 origtargz . 78
12.5 git deborig . 78
12.6 dpkg-source -b . 78
12.7 dpkg-source -x . 78
12.8 debc . 78
12.9 piuparts . 78
12.10bts . 79

13 More Examples 80
13.1 Cherry-pick templates . 80
13.2 No Makefile (shell, CLI) . 82
13.3 Makefile (shell, CLI) . 88
13.4 pyproject.toml (Python3, CLI) . 90
13.5 Makefile (shell, GUI) . 95
13.6 pyproject.toml (Python3, GUI) . 97
13.7 Makefile (single-binary package) . 100
13.8 Makefile.in + configure (single-binary package) . 103
13.9 Autotools (single-binary package) . 106
13.10CMake (single-binary package) . 109
13.11Autotools (multi-binary package) . 112
13.12CMake (multi-binary package) . 118
13.13Internationalization . 122
13.14Details . 128

14 debmake(1) manpage 129
14.1 NAME . 129
14.2 SYNOPSIS . 129
14.3 DESCRIPTION . 129

14.3.1 optional arguments: . 129
14.4 EXAMPLES . 132
14.5 HELPER PACKAGES . 133
14.6 CAVEAT . 133
14.7 DEBUG . 133
14.8 AUTHOR . 134
14.9 LICENSE . 134
14.10SEE ALSO . 134

15 debmake options 135
15.1 Shortcut options (-a, -i) . 135
15.2 debmake -b . 135
15.3 debmake -cc . 136
15.4 Snapshot upstream tarball (-d, -t) . 137
15.5 debmake -j . 137
15.6 debmake -k . 138
15.7 debmake -P . 138

iv

CONTENTS

15.8 debmake -T . 138
15.9 debmake -x . 139

v

Abstract
This “Guide for Debian Maintainers” (2024-10-01) tutorial guide describes the building of the Debian package

to ordinary Debian users and prospective developers using the debmake command.
This guide focuses on the modern packaging style and comes with many simple examples.

• POSIX shell script packaging

• Python3 script packaging

• C with Makefile/Autotools/CMake

• multiple binary packages with shared library etc.

This “Guide for Debian Maintainers” can be considered as the successor to the “Debian New Maintainers’
Guide”.

Chapter 1

Preface

If you are a somewhat experienced Debian user 1, you may have encountered following situations:

• You wish to install a certain software package not yet found in the Debian archive.

• You wish to update a Debian package with the newer upstream release.

• You wish to fix bugs of a Debian package with some patches.

If you wanted to create a Debian package to fulfill these wishes and to share your work with the community,
you are the target audience of this guide as a prospective Debian maintainer. 2 Welcome to the Debian community.

Debian has many social and technical rules and conventions to follow since it is a large volunteer organization
with history. Debian also has developed a huge array of packaging tools and archive maintenance tools to build
consistent sets of binary packages addressing many technical objectives:

• packages build across many architectures (“Section 8.3”)

• reproducible build (“Section 9.7”)

• clean build under clearly specified package dependencies and patches (“Section 6.6”, “Section 6.9”, “Sec-
tion 4.6”)

• optimal splits into multiple binary packages (“Section 9.11”)

• smooth library transitions (“Section 9.18”)

• interactive installation customization (“Section 9.22”)

• multiarch support (“Section 9.10”)

• security enhancement using specific compiler flags (“Section 9.6”)

• continuous integration (“Section 9.4”)

• boot strapping (“Section 9.5”)

• …

These make it somewhat overwhelming for many new prospective Debian maintainers to get involved with
Debian. This guide tries to provide entry points for them to get started. It describes the following:

• What you should know before getting involved with Debian as a prospective maintainer.

• What it looks like to make a simple Debian package.

• What kind of rules exist for making the Debian package.

• Tips for making the Debian package.

1You do need to know a little about Unix programming but you certainly don’t need to be a wizard. You can learn about the basic handling
of a Debian system from the “Debian Reference”. It contains some pointers to learn about Unix programming, too.

2If you are not interested in sharing the Debian package, you can certainly work around your local situation by compiling and installing
the fixed upstream source package into /usr/local/.

1

https://www.debian.org/doc/user-manuals#quick-reference

CHAPTER 1. PREFACE

• Examples of making Debian packages for several typical scenarios.

The author felt limitations of updating the original “New Maintainers’ Guide” with the dh-make package and
decided to create an alternative tool and its matching document to address modern requirements such as multi-arch.
The result was the debmake package version: 4.0 in 2013. The current debmake is version: 4.5.0. It comes with
this updated “Guide for Debian Maintainers” in the debmake-doc (version: 1.20-1) package. (In 2016, dh-make
was ported from perl to python with updated features.)

Many chores and tips have been integrated into the debmake command allowing this guide to be terse. This
guide also offers many packaging examples for you to get started.

Caution

It takes many hours to properly create and maintain Debian packages. The De-
bian maintainer must be both technically competent and diligent to take up
this challenge.

Some important topics are explained in detail. Some of them may look irrelevant to you. Please be patient.
Some corner cases are skipped. Some topics are only covered by the external pointers. These are intentional choices
to keep this guide simple and maintainable.

2

https://www.debian.org/doc/manuals/debmake-doc/

Chapter 2

Overview

The Debian packaging of the package-1.0.tar.gz, containing a simple C source following the “GNU Coding Stan-
dards” and “FHS”, can be done with the debmake command as follows.

$ tar -xvzf package-1.0.tar.gz
$ cd package-1.0
$ debmake
... Make manual adjustments of generated configuration files

$ debuild

If manual adjustments of generated configuration files are skipped, the generated binary package lacks mean-
ingful package description but still functions well under the dpkg command to be used for your local deployment.

Caution

The debmake command only provides decent template files. These template
files must be manually adjusted to their perfection to comply with the strict qual-
ity requirements of the Debian archive, if the generated package is intended for
general consumption.

If you are new to Debian packaging, do not worry about the details and just get the big picture instead.
If you have been exposed to Debian packaging, this looks vgry much like the dh_make command. This is

because the debmake command is intended to replace functions offered historically by the dh_make command. 1
The debmake command is designed with the following features:

• modern packaging style

– debian/copyright: “DEP-5” compliant
– debian/control: substvar support, multiarch support, multi binary packages, …
– debian/rules: dh syntax, compiler hardening options, …

• flexibility

– many options (see “Section 15.2”, “Chapter 14”, and “Chapter 15”)

• sane default actions

– execute non-stop with clean results
– generate the multiarch package, unless the -m option is explicitly specified.
– generate the non-native Debian package with the Debian source format “3.0 (quilt)”, unless the -n

option is explicitly specified.

• extra utility

– verification of the debian/copyright file against the current source (see “Section 15.6”)
1The deb-make command was popular before the dh_make command. The current debmake package starts its version from 4.0 to avoid

version overlaps with the obsolete debmake package, which provided the deb-make command.

3

https://www.gnu.org/prep/standards/
https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://dep-team.pages.debian.net/deps/dep5/

CHAPTER 2. OVERVIEW

The debmake command delegates most of the heavy lifting to its back-end packages: debhelper, dpkg-dev,
devscripts, sbuild, schroot, etc.

Tip

Make sure to protect the arguments of the -b, -f, -l, and -w options from shell
interference by quoting them properly.

Tip

The non-native Debian package is the normal Debian package.

Tip

The detailed log of all the package build examples in this document can be ob-
tained by following the instructions in “Section 13.14”.

Note

The generation of the debian/copyright file, and the outputs from the -c (see
“Section 15.3”) and -k (see “Section 15.6”) options involve heuristic operations
on the copyright and license information. They may produce some erroneous
results.

4

Chapter 3

Prerequisites

Here are the prerequisites which you need to understand before you to get involved with Debian.

3.1 People around Debian
There are several types of people interacting around Debian with different roles:

• upstream author: the person who made the original program.

• upstream maintainer: the person who currently maintains the program.

• maintainer: the person making the Debian package of the program.

• sponsor: a person who helps maintainers to upload packages to the official Debian package archive (after
checking their contents).

• mentor: a person who helps novice maintainers with packaging etc.

• Debian Developer (DD): a member of the Debian project with full upload rights to the official Debian
package archive.

• Debian Maintainer (DM): a person with limited upload rights to the official Debian package archive.

Please note that you can’t become an official Debian Developer (DD) overnight, because it takes more than
technical skill. Please do not be discouraged by this. If it is useful to others, you can still upload your package
either as a maintainer through a sponsor or as a Debian Maintainer.

Please note that you do not need to create any new packages to become an official Debian Developer. Con-
tributing to the existing packages can provide a path to becoming an official Debian Developer too. There are many
packages waiting for good maintainers (see “” ̀Section 3.8” ̀”).

3.2 How to contribute
Please refer to the following to learn how to contribute to Debian:

• “How can you help Debian?” (official)

• “The Debian GNU/Linux FAQ, Chapter 13 - Contributing to the Debian Project” (semi-official)

• “Debian Wiki, HelpDebian” (supplemental)

• “Debian New Member site” (official)

• “Debian Mentors FAQ” (supplemental)

5

https://www.debian.org/intro/help
https://www.debian.org/doc/manuals/debian-faq/contributing
https://wiki.debian.org/HelpDebian
https://nm.debian.org/
https://wiki.debian.org/DebianMentorsFaq

CHAPTER 3. PREREQUISITES 3.3. SOCIAL DYNAMICS OF DEBIAN

3.3 Social dynamics of Debian
Please understand Debian’s social dynamics to prepare yourself for interactions with Debian:

• We all are volunteers.

– You can’t impose on others what to do.
– You should be motivated to do things by yourself.

• Friendly cooperation is the driving force.

– Your contribution should not over-strain others.
– Your contribution is valuable only when others appreciate it.

• Debian is not your school where you get automatic attention of teachers.

– You should be able to learn many things by yourself.
– Attention from other volunteers is a very scarce resource.

• Debian is constantly improving.

– You are expected to make high quality packages.
– You should adapt yourself to change.

Since we focus only on the technical aspects of the packaging in the rest of this guide, please refer to the
following to understand the social dynamics of Debian:

• “Debian: 17 years of Free Software, ”do-ocracy”, and democracy” (Introductory slides by the ex-DPL)

3.4 Technical reminders
Here are some technical reminders to accommodate other maintainers to work on your package easily and effec-
tively to maximize the output of Debian as a whole.

• Make your package easy to debug.

– Keep your package simple.
– Don’t over-engineer your package.

• Keep your package well-documented.

– Use readable code style.
– Make comments in code.
– Format code consistently.
– Maintain the git repository 1 of the package.

Note

Debugging of software tends to consume more time than writing the initial working
software.

It is unwise to run your base system under the unstable suite even for the development system.

• Creation of binary deb packages and their verification should use minimal unstable chroot described in
“Section 4.6”.

• Basic interactive package development activities should use unstable chroot described in “Section 4.7”.

1The overwhelming number of Debian maintainers use git over other VCS systems such as hg, bzr, etc.

6

http://upsilon.cc/~zack/talks/2011/20110321-taipei.pdf

CHAPTER 3. PREREQUISITES 3.5. DEBIAN DOCUMENTATION

Note

Advanced package development activities such as testing of full Desktop sys-
tems, network daemons, and system installer packages, should use unstable
suite running under the “virtualization”.

3.5 Debian documentation
Please make yourself ready to read the pertinent part of the latest Debian documentation to generate perfect Debian
packages:

• “Debian Policy Manual”

– The official “must follow” rules (https://www.debian.org/doc/devel-manuals#policy)

• “Debian Developer’s Reference”

– The official “best practice” document (https://www.debian.org/doc/devel-manuals#devref)

• “Guide for Debian Maintainers” — this guide

– A “tutorial reference” document (https://www.debian.org/doc/devel-manuals#debmake-doc)

All these documents are published to https://www.debian.org using the unstable suite versions of corresponding
Debian packages. If you wish to have local accesses to all these documents from your base system, please consider
to use techniques such as “apt-pinning” and “chroot”.

If this guide contradicts the official Debian documentation, the official Debian documentation is correct. Please
file a bug report on the debmake-doc package using the reportbug command.

Here are alternative tutorial documents, which you may read along with this guide:

• “Debian Packaging Tutorial”

– https://www.debian.org/doc/devel-manuals#packaging-tutorial
– https://packages.qa.debian.org/p/packaging-tutorial.html

• “Ubuntu Packaging Guide” (Ubuntu is Debian based.)

– http://packaging.ubuntu.com/html/

• “Debian New Maintainers’ Guide” (predecessor of this tutorial, deprecated)

– https://www.debian.org/doc/devel-manuals#maint-guide
– https://packages.qa.debian.org/m/maint-guide.html

Tip

When reading these, you may consider using the debmake command in place
of the dh_make command.

7

https://www.debian.org/doc/manuals/debian-reference/ch09.en.html#_multiple_desktop_systems
https://www.debian.org/doc/devel-manuals#policy
https://www.debian.org/doc/devel-manuals#devref
https://www.debian.org/doc/devel-manuals#debmake-doc
https://www.debian.org
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html#_tweaking_candidate_version
https://en.wikipedia.org/wiki/Chroot
https://www.debian.org/doc/devel-manuals#packaging-tutorial
https://packages.qa.debian.org/p/packaging-tutorial.html
http://packaging.ubuntu.com/html/
https://www.debian.org/doc/devel-manuals#maint-guide
https://packages.qa.debian.org/m/maint-guide.html

CHAPTER 3. PREREQUISITES 3.6. HELP RESOURCES

3.6 Help resources
Before you decide to ask your question in some public place, please do your part of the effort, i.e., read the fine
documentation:

• package information available through the aptitude, apt-cache, and dpkg commands.

• files in /usr/share/doc/package for all pertinent packages.

• contents of man command for all pertinent commands.

• contents of info command for all pertinent commands.

• contents of “debian-mentors@lists.debian.org mailing list archive”.

• contents of “debian-devel@lists.debian.org mailing list archive”.

Your desired information can be found effectively by using a well-formed search string such as “keyword
site:lists.debian.org” to limit the search domain of the web search engine.

Making a small test package is a good way to learn details of the packaging. Inspecting existing well maintained
packages is the best way to learn how other people make packages.

If you still have questions about the packaging, you can ask them interactively:

• debian-mentors@lists.debian.org mailing list. (This mailing list is for the novice.)

• debian-devel@lists.debian.org mailing list. (This mailing list is for the expert.)

• IRC such as #debian-mentors.

• Teams focusing on a specific set of packages. (Full list at https://wiki.debian.org/Teams)

• Language-specific mailing lists.

– “debian-devel-{french,italian,portuguese,spanish}@lists.debian.org”
– “debian-chinese-gb@lists.debian.org” (This mailing list is for general (Simplified) Chinese discussion.)
– “debian-devel@debian.or.jp”

The more experienced Debian developers will gladly help you, if you ask properly after making your required
efforts.

Caution

Debian development is a moving target. Some information found on the web may
be outdated, incorrect, and non-applicable. Please use them carefully.

3.7 Archive situation
Please realize the situation of the Debian archive.

• Debian already has packages for most kinds of programs.

• The number of packages already in the Debian archive is several tens of times greater than that of active
maintainers.

• Unfortunately, some packages lack an appropriate level of attention by the maintainer.

Thus, contributions to packages already in the archive are far more appreciated (and more likely to receive
sponsorship for uploading) by other maintainers.

8

https://lists.debian.org/debian-mentors/
https://lists.debian.org/debian-devel/
mailto:debian-mentors@lists.debian.org
mailto:debian-devel@lists.debian.org
https://www.debian.org/support#irc
https://wiki.debian.org/Teams
https://lists.debian.org/devel.html
https://lists.debian.org/debian-chinese-gb/
http://www.debian.or.jp/community/ml/openml.html#develML

CHAPTER 3. PREREQUISITES 3.8. CONTRIBUTION APPROACHES

Tip

The wnpp-alert command from the devscripts package can check for installed
packages up for adoption or orphaned.

Tip

The how-can-i-help package can show opportunities for contributing to Debian
on packages installed locally.

3.8 Contribution approaches
Here is pseudo-Python code for your contribution approaches to Debian with a program:

if exist_in_debian(program):
if is_team_maintained(program):
join_team(program)

if is_orphaned(program): # maintainer: Debian QA Group
adopt_it(program)

elif is_RFA(program): # Request for Adoption
adopt_it(program)

else:
if need_help(program):
contact_maintainer(program)
triaging_bugs(program)
preparing_QA_or_NMU_uploads(program)

else:
leave_it(program)

else: # new packages
if not is_good_program(program):
give_up_packaging(program)

elif not is_distributable(program):
give_up_packaging(program)

else: # worth packaging
if is_ITPed_by_others(program):
if need_help(program):
contact_ITPer_for_collaboration(program)

else:
leave_it_to_ITPer(program)

else: # really new
if is_applicable_team(program):
join_team(program)

if is_DFSG(program) and is_DFSG(dependency(program)):
file_ITP(program, area="main") # This is Debian

elif is_DFSG(program):
file_ITP(program, area="contrib") # This is not Debian

else: # non-DFSG
file_ITP(program, area="non-free") # This is not Debian

package_it_and_close_ITP(program)

Here:

• For exist_in_debian(), and is_team_maintained(); check:

– the aptitude command
– “Debian packages” web page

9

https://www.debian.org/distrib/packages

CHAPTER 3. PREREQUISITES 3.9. NOVICE CONTRIBUTOR AND MAINTAINER

– Debian wiki “Teams” page

• For is_orphaned(), is_RFA(), and is_ITPed_by_others(); check:

– The output of the wnpp-alert command.
– “Work-Needing and Prospective Packages”
– “Debian Bug report logs: Bugs in pseudo-package wnpp in unstable”
– “Debian Packages that Need Lovin’”
– “Browse wnpp bugs based on debtags”

• For is_good_program(), check:

– The program should be useful.
– The program should not introduce security and maintenance concerns to the Debian system.
– The program should be well documented and its code needs to be understandable (i.e. not obfuscated).
– The program’s authors agree with the packaging and are amicable to Debian. 2

• For is_it_DFSG(), and is_its_dependency_DFSG(); check:

– “Debian Free Software Guidelines” (DFSG).

• For is_it_distributable(), check:

– The software must have a license and it should allow its distribution.

You either need to file an ITP or adopt a package to start working on it. See the “Debian Developer’s Refer-
ence”:

• “5.1. New packages”.

• “5.9. Moving, removing, renaming, orphaning, adopting, and reintroducing packages”.

3.9 Novice contributor and maintainer
The novice contributor and maintainer may wonder what to learn to start your contribution to Debian. Here are my
suggestions depending on your focus:

• Packaging

– Basics of the POSIX shell and make.
– Some rudimentary knowledge of Perl and Python.

• Translation

– Basics of how the PO based translation system works.

• Documentation

– Basics of text markups (XML, ReST, Wiki, …).

The novice contributor and maintainer may wonder where to start your contribution to Debian. Here are my
suggestions depending on your skills:

• POSIX shell, Perl, and Python skills:

– Send patches to the Debian Installer.
– Send patches to the Debian packaging helper scripts such as devscripts, sbuild, schroot, etc. mentioned

in this document.

• C and C++ skills:
2This is not the absolute requirement. The hostile upstream may become a major resource drain for us all. The friendly upstream can be

consulted to solve any problems with the program.

10

https://wiki.debian.org/Teams
https://www.debian.org/devel/wnpp/
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=wnpp;dist=unstable
https://wnpp.debian.net/
https://wnpp-by-tags.debian.net/
https://www.debian.org/social_contract#guidelines
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#newpackage
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#archive-manip

CHAPTER 3. PREREQUISITES 3.9. NOVICE CONTRIBUTOR AND MAINTAINER

– Send patches to the packages with the required and important priorities.

• Non-English skills:

– Send patches to the PO file of the Debian Installer.
– Send patches to the PO file of the packages with the required and important priorities.

• Documentation skills:

– Update contents on “Debian Wiki”.
– Send patches to the existing “Debian Documentation”.

These activities should give you good exposure to the other Debian people to establish your credibility.
The novice maintainer should avoid packaging programs with the high security exposure:

• setuid or setgid program

• daemon program

• program installed in the /sbin/ or /usr/sbin/ directories

When you gain more experience in packaging, you’ll be able to package such programs.

11

https://wiki.debian.org/
https://www.debian.org/doc/

Chapter 4

Tool Setups

The build-essential package must be installed in the build environment.
The devscripts package should be installed in the development environment of the maintainer.
It is a good idea to install and set up all of the popular set of packages mentioned in this chapter. These enable

us to share the common baseline working environment, although these are not necessarily absolute requirements.
Please also consider to install the tools mentioned in the “Overview of Debian Maintainer Tools” in the “Debian

Developer’s Reference”, as needed.

Caution

Tool setups presented here are only meant as an example and may not be up-to-
date with the latest packages on the system. Debian development is a moving
target. Please make sure to read the pertinent documentation and update the
configuration as needed.

4.1 Email setup
Various Debian maintenance tools recognize your email address and name to use by the shell environment variables
$DEBEMAIL and $DEBFULLNAME.

Let’s set these environment variables by adding the following lines to ~/.bashrc 1.
Add to the ~/.bashrc file

DEBEMAIL="osamu@debian.org"
DEBFULLNAME="Osamu Aoki"
export DEBEMAIL DEBFULLNAME

Note

The above is for the author of this manual. The configuration and operation ex-
amples presented in this manual use these email address and name settings.
You must use your email address and name for your system.

4.2 mc setup
The mc command offers very easy ways to manage files. It can open the binary deb file to check its content by
pressing the Enter key over the binary deb file. It uses the dpkg-deb command as its back-end. Let’s set it up to
support easy chdir as follows.

1This assumes you are using Bash as your login shell. If you use some other login shell such as Z shell, use their corresponding configuration
files instead of ~/.bashrc.

12

https://www.debian.org/doc/manuals/developers-reference/tools.html

CHAPTER 4. TOOL SETUPS 4.3. GIT SETUP

Add to the ~/.bashrc file

mc related
if [-f /usr/lib/mc/mc.sh]; then
. /usr/lib/mc/mc.sh

fi

4.3 git setup
Nowadays, the git command is the essential tool to manage the source tree with history.

The global user configuration for the git command such as your name and email address can be set in ~/.gitconfig
as follows.

$ git config --global user.name "Osamu Aoki"
$ git config --global user.email osamu@debian.org

If you are too accustomed to the CVS or Subversion commands, you may wish to set several command aliases
as follows.

$ git config --global alias.ci "commit -a"
$ git config --global alias.co checkout

You can check your global configuration as follows.

$ git config --global --list

Tip

It is essential to use some GUI git tools like gitk or gitg to work effectively with
the history of the git repository.

4.4 quilt setup
The quilt command offers a basic method for recording modifications. For the Debian packaging, it should be
customized to record modifications in the debian/patches/ directory instead of its default patches/ directory.

In order to avoid changing the behavior of the quilt command itself, let’s create an alias dquilt for the Debian
packaging by adding the following lines to the ~/.bashrc file. The second line provides the same shell completion
feature of the quilt command to the dquilt command.

Add to the ~/.bashrc file

alias dquilt="quilt --quiltrc=${HOME}/.quiltrc-dpkg"
. /usr/share/bash-completion/completions/quilt
complete -F _quilt_completion $_quilt_complete_opt dquilt

Then let’s create ~/.quiltrc-dpkg as follows.

d=.
while [! -d $d/debian -a `readlink -e $d` != /];

do d=$d/..; done
if [-d $d/debian] && [-z $QUILT_PATCHES]; then

if in Debian packaging tree with unset $QUILT_PATCHES
QUILT_PATCHES="debian/patches"
QUILT_PATCH_OPTS="--reject-format=unified"
QUILT_DIFF_ARGS="-p ab --no-timestamps --no-index --color=auto"
QUILT_REFRESH_ARGS="-p ab --no-timestamps --no-index"
QUILT_COLORS="diff_hdr=1;32:diff_add=1;34:diff_rem=1;31:diff_hunk=1;33:"
QUILT_COLORS="${QUILT_COLORS}diff_ctx=35:diff_cctx=33"
if ! [-d $d/debian/patches]; then mkdir $d/debian/patches; fi

fi

13

CHAPTER 4. TOOL SETUPS 4.5. DEVSCRIPTS SETUP

See quilt(1) and “How To Survive With Many Patches or Introduction to Quilt (quilt.html)” on how to use the
quilt command.

See “Section 5.9” for example usages.

4.5 devscripts setup
The debsign command, included in the devscripts package, is used to sign the Debian package with your private
GPG key.

The debuild command, included in the devscripts package, builds the binary package and checks it with the
lintian command. It is useful to have verbose outputs from the lintian command.

You can set these up in ~/.devscripts as follows.

DEBUILD_DPKG_BUILDPACKAGE_OPTS="-i -I -us -uc"
DEBUILD_LINTIAN_OPTS="-i -I --show-overrides"
DEBSIGN_KEYID="Your_GPG_keyID"

The -i and -I options in DEBUILD_DPKG_BUILDPACKAGE_OPTS for the dpkg-source command help
rebuilding of Debian packages without extraneous contents (see “Chapter 7”).

Currently, an RSA key with 4096 bits is a good idea. See “Creating a new GPG key”.

4.6 sbuild setup
The sbuild package provides a clean room (“chroot”) build environment. It offers this efficiently with the help of
schroot using the bind-mount feature of the modern Linux kernel.

Since it is the same build environment as the Debian’s buildd infrastructure, it is always up to date and comes
full of useful features.

It can be customized to offer following features:

• The schroot package to boost the chroot creation speed.

• The lintian package to find bugs in the package.

• The piuparts package to find bugs in the package.

• The autopkgtest package to find bugs in the package.

• The ccache package to boost the gcc speed. (optional)

• The libeatmydata1 package to boost the dpkg speed. (optional)

• The parallel make to boost the build speed. (optional)

Let’s set up sbuild environment 2:

$ sudo apt install sbuild piuparts autopkgtest lintian
$ sudo apt install sbuild-debian-developer-setup
$ sudo sbuild-debian-developer-setup -s unstable

Let’s update your group membership to include sbuild and verify it:

$ newgrp -
$ id
uid=1000(<yourname>) gid=1000(<yourname>) groups=...,132(sbuild)

Here, “reboot of system” or “kill -TERM -1” can be used instead to update your group membership 3 .
Let’s create the configuration file ~/.sbuildrc in line with recent Debian practice of “source-only-upload” as:

cat >~/.sbuildrc << 'EOF'
##
PACKAGE BUILD RELATED (source-only-upload as default)
##
-d

2Be careful since some older HOWTOs may use different chroot setups.
3Simply “logout and login under some modern GUI Desktop environment” may not update your group membership.

14

file:///usr/share/doc/quilt/quilt.html
https://keyring.debian.org/creating-key.html
https://en.wikipedia.org/wiki/Chroot
https://buildd.debian.org/
https://wiki.debian.org/SourceOnlyUpload

CHAPTER 4. TOOL SETUPS 4.6. SBUILD SETUP

$distribution = 'unstable';
-A
$build_arch_all = 1;
-s
$build_source = 1;
--source-only-changes
$source_only_changes = 1;
-v
$verbose = 1;

##
POST-BUILD RELATED (turn off functionality by setting variables to 0)
##
$run_lintian = 1;
$lintian_opts = ['-i', '-I'];
$run_piuparts = 1;
$piuparts_opts = ['--schroot', 'unstable-amd64-sbuild'];
$run_autopkgtest = 1;
$autopkgtest_root_args = '';
$autopkgtest_opts = ['--', 'schroot', '%r-%a-sbuild'];

##
PERL MAGIC
##
1;
EOF

Note

There are some exceptional cases such as NEW uploads, uploads with NEW
binary packages, and security uploads where you can’t do source-only-upload
but are required to upload with binary packages. The above configuration needs
to be adjusted for those exceptional cases.

Following document assumes that sbuild is configured this way.
Edit this to your needs. Post-build tests can be turned on and off by assigning 1 or 0 to the corresponding

variables,

Warning

The optional customization may cause negative effects. In case of doubts, dis-
able them.

Note

The parallel make may fail for some existing packages and may make the build
log difficult to read.

15

https://wiki.debian.org/SourceOnlyUpload

CHAPTER 4. TOOL SETUPS 4.7. PERSISTENT CHROOT SETUP

Tip

Many sbuild related hints are available at “Section 8.7” and
“https://wiki.debian.org/sbuild” .

4.7 Persistent chroot setup

Note

Use of independent copied chroot filesystem prevents contaminating the source
chroot used by sbuild.

For building new experimental packages or for debugging buggy packages, let’s setup dedicated persistent
chroot “source:unstable-amd64-desktop” by:

$ sudo cp -a /srv/chroot/unstable-amd64-sbuild-$suffix /srv/chroot/unstable-amd64 ←↩
-desktop

$ sudo tee /etc/schroot/chroot.d/unstable-amd64-desktop << EOF
[unstable-desktop]
description=Debian sid/amd64 persistent chroot
groups=root,sbuild
root-groups=root,sbuild
profile=desktop
type=directory
directory=/srv/chroot/unstable-amd64-desktop
union-type=overlay
EOF

Here, desktop profile is used instead of sbuild profile. Please make sure to adjust /etc/schroot/desktop/fstab
to make package source accessible from inside of the chroot.

You can log into this chroot “source:unstable-amd64-desktop” by:

$ sudo schroot -c source:unstable-amd64-desktop

4.8 gbp setup
The git-buildpackage package offers the gbp(1) command. Its user configuration file is ~/.gbp.conf.

Configuration file for "gbp <command>"

[DEFAULT]
the default build command:
builder = sbuild
use pristine-tar:
pristine-tar = True
Use color when on a terminal, alternatives: on/true, off/false or auto
color = auto

4.9 HTTP proxy
You should set up a local HTTP caching proxy to save the bandwidth for the Debian package repository access.
There are several choices:

16

https://wiki.debian.org/sbuild

CHAPTER 4. TOOL SETUPS 4.10. PRIVATE DEBIAN REPOSITORY

• Specialized HTTP caching proxy using the apt-cacher-ng package.

• Generic HTTP caching proxy (squid package) configured by squid-deb-proxy package

In order to use this HTTP proxy without manual configuration adjustment, it’s a good idea to install either
auto-apt-proxy or squid-deb-proxy-client package to everywhere.

4.10 Private Debian repository
You can set up a private Debian package repository with the reprepro package.

4.11 Virtual machines
For testing GUI application, it is a good idea to have virtual machines. Install virt-manager and qemu-kvm
packages.

Use of chroot and virtual machines allows us not to update the whole host PC to the latest unstable suite.

4.12 Local network with virtual machines
In order to access virtual machines easily over the local network, setting up multicast DNS service discovery
infrastructure by installing avahi-utils is a good idea.

For all running virtual machines and the host PC, we can use each host name appended with .local for SSH to
access each other.

17

Chapter 5

Simple packaging

There is an old Latin saying: “Longum iter est per praecepta, breve et efficax per exempla” (“It’s a long way
by the rules, but short and efficient with examples”).

5.1 Packaging tarball
Here is an example of creating a simple Debian package from a simple C source using the Makefile as its build
system.

Let’s assume this upstream tarball to be debhello-0.0.tar.gz.
This type of source is meant to be installed as a non-system file as:
Basics for the install from the upstream tarball

$ tar -xzmf debhello-0.0.tar.gz
$ cd debhello-0.0
$ make
$ make install

Debian packaging requires changing this “make install” process to install files to the target system image
location instead of the normal location under /usr/local.

Note

Examples of creating a Debian package from other complicated build systems
are described in “Chapter 13”.

5.2 Big picture
The big picture for building a single non-native Debian package from the upstream tarball debhello-0.0.tar.gz can
be summarized as:

• The maintainer obtains the upstream tarball debhello-0.0.tar.gz and untars its contents to the debhello-0.0
directory.

• The debmake command debianizes the upstream source tree by adding template files only in the debian
directory.

– The debhello_0.0.orig.tar.gz symlink is created pointing to the debhello-0.0.tar.gz file.
– The maintainer customizes template files.

• The debuild command builds the binary package from the debianized source tree.

– debhello-0.0-1.debian.tar.xz is created containing the debian directory.

Big picture of package building

18

CHAPTER 5. SIMPLE PACKAGING 5.3. WHAT IS DEBMAKE?

$ tar -xzmf debhello-0.0.tar.gz
$ cd debhello-0.0
$ debmake
... manual customization

$ debuild
...

Tip

The debuild command in this and following examples may be substituted by
equivalent commands such as the sbuild command.

Tip

If the upstream tarball in the .tar.xz format is available, use it instead of the one
in the .tar.gz and .tar.bz2 formats. The xz compression format offers the better
compression than the gzip and bzip2 compressions.

5.3 What is debmake?

Note

Actual packaging activities are often performed manually without using debmake
while referencing only existing similar packages and “Debian Policy Manual”.

The debmake command is the helper script for the Debian packaging. (“Chapter 14”)

• It creates good template files for the Debian packages.

• It always sets most of the obvious option states and values to reasonable defaults.

• It generates the upstream tarball and its required symlink if they are missing.

• It doesn’t overwrite the existing configuration files in the debian/ directory.

• It supports the multiarch package.

• It provides short extracted license texts as debian/copyright in decent accuracy to help license review.

These features make Debian packaging with debmake simple and modern.
In retrospective, I created debmake to simplify this documentation. I consider debmake to be more-or-less a

demonstration session generator for tutorial purpose.
The debmake command isn’t the only helper script to make a Debian package. If you are interested alternative

packaging helper tools, please see:

• Debian wiki: “AutomaticPackagingTools” — Extensive comparison of packaging helper scripts

• Debian wiki: “CopyrightReviewTools” — Extensive comparison of copyright review helper scripts

19

https://www.debian.org/doc/debian-policy/
https://wiki.debian.org/AutomaticPackagingTools
https://wiki.debian.org/CopyrightReviewTools

CHAPTER 5. SIMPLE PACKAGING 5.4. WHAT IS DEBUILD?

5.4 What is debuild?
Here is a summary of commands similar to the debuild command.

• The debian/rules file defines how the Debian binary package is built.

• The dpkg-buildpackage command is the official command to build the Debian binary package. For normal
binary build, it executes roughly:

– “dpkg-source --before-build” (apply Debian patches, unless they are already applied)
– “fakeroot debian/rules clean”
– “dpkg-source --build” (build the Debian source package)
– “fakeroot debian/rules build”
– “fakeroot debian/rules binary”
– “dpkg-genbuildinfo” (generate a *.buildinfo file)
– “dpkg-genchanges” (generate a *.changes file)
– “fakeroot debian/rules clean”
– “dpkg-source --after-build” (unapply Debian patches, if they are applied during --before-build)
– “debsign” (sign the *.dsc and *.changes files)

* If you followed “Section 4.5” to set the -us and -uc options, this step is skipped and you must run
the debsign command manually.

• The debuild command is a wrapper script of the dpkg-buildpackage command to build the Debian binary
package under the proper environment variables.

• The sbuild command is a wrapper script to build the Debian binary package under the proper chroot envi-
ronment with the proper environment variables.

Note

See dpkg-buildpackage(1) for exact details.

5.5 Step 1: Get the upstream source
Let’s get the upstream source.

Download debhello-0.0.tar.gz

$ wget http://www.example.org/download/debhello-0.0.tar.gz
...
$ tar -xzmf debhello-0.0.tar.gz
$ tree
.
+-- debhello-0.0
| +-- Makefile
| +-- README.md
| +-- src
| +-- hello.c
+-- debhello-0.0.tar.gz

3 directories, 4 files

Here, the C source hello.c is a very simple one.
hello.c

20

CHAPTER 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

$ cat debhello-0.0/src/hello.c
#include <stdio.h>
int
main()
{

printf("Hello, world!\n");
return 0;

}

Here, the Makefile supports “GNU Coding Standards” and “FHS”. Notably:

• build binaries honoring $(CPPFLAGS), $(CFLAGS), $(LDFLAGS), etc.

• install files with $(DESTDIR) defined to the target system image

• install files with $(prefix) defined, which can be overridden to be /usr

Makefile

$ cat debhello-0.0/Makefile
prefix = /usr/local

all: src/hello

src/hello: src/hello.c
@echo "CFLAGS=$(CFLAGS)" | \

fold -s -w 70 | \
sed -e 's/^/# /'

$(CC) $(CPPFLAGS) $(CFLAGS) $(LDCFLAGS) -o $@ $^

install: src/hello
install -D src/hello \

$(DESTDIR)$(prefix)/bin/hello

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello

.PHONY: all install clean distclean uninstall

Note

The echo of the $(CFLAGS) variable is used to verify the proper setting of the
build flag in the following example.

5.6 Step 2: Generate template files with debmake
The output from the debmake command is very verbose and explains what it does as follows.

The output from the debmake command

$ cd /path/to/debhello-0.0
$ debmake -x1
I: set parameters
I: sanity check of parameters
I: pkg="debhello", ver="0.0", rev="1"

21

https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

CHAPTER 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

I: *** start packaging in "debhello-0.0". ***
I: provide debhello_0.0.orig.tar.gz for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-0.0.tar.gz debhello_0.0.orig.tar.gz
I: pwd = "/path/to/debhello-0.0"
I: parse binary package settings:
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: analyze the source tree
I: build_type = make
I: scan source for copyright+license text and file extensions
I: 50 %, ext = md
I: 50 %, ext = c
I: check_all_licenses
I: ...
I: check_all_licenses completed for 3 files.
I: bunch_all_licenses
I: format_all_licenses
I: make debian/* template files
I: debmake -x "1" ...
I: creating => debian/control
I: creating => debian/copyright
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra0_changel...
I: creating => debian/changelog
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra0_rules.t...
I: creating => debian/rules
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra0source_f...
I: creating => debian/source/format
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_README....
I: creating => debian/README.Debian
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_README....
I: creating => debian/README.source
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_clean.t...
I: creating => debian/clean
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_gbp.con...
I: creating => debian/gbp.conf
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_salsa-c...
I: creating => debian/salsa-ci.yml
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_watch.t...
I: creating => debian/watch
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1tests_co...
I: creating => debian/tests/control
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1upstream...
I: creating => debian/upstream/metadata
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1patches_...
I: creating => debian/patches/series
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1source.n...
I: creating => debian/source/local-options.ex
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1source.n...
I: creating => debian/source/local-patch-header.ex
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1single_d...
I: creating => debian/dirs
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1single_i...
I: creating => debian/install
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1single_l...
I: creating => debian/links
I: $ wrap-and-sort
I: $ wrap-and-sort complete. Now, debian/* may have a blank line at the top....

The debmake command generates all these template files based on command line options. Since no options
are specified, the debmake command chooses reasonable default values for you:

• The source package name: debhello

• The upstream version: 0.0

22

CHAPTER 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

• The binary package name: debhello

• The Debian revision: 1

• The package type: bin (the ELF binary executable package)

• The -x option: -x1 (without maintainer script supports for simplicity)

Note

Here, the debmake command is invoked with the -x1 option to keep this tutorial
simple. Use of default -x3 option is highly recommended.

Let’s inspect generated template files.
The source tree after the basic debmake execution.

$ cd /path/to
$ tree
.
+-- debhello-0.0
| +-- Makefile
| +-- README.md
| +-- debian
| | +-- README.Debian
| | +-- README.source
| | +-- changelog
| | +-- clean
| | +-- control
| | +-- copyright
| | +-- dirs
| | +-- gbp.conf
| | +-- install
| | +-- links
| | +-- patches
| | | +-- series
| | +-- rules
| | +-- salsa-ci.yml
| | +-- source
| | | +-- format
| | | +-- local-options.ex
| | | +-- local-patch-header.ex
| | +-- tests
| | | +-- control
| | +-- upstream
| | | +-- metadata
| | +-- watch
| +-- src
| +-- hello.c
+-- debhello-0.0.tar.gz
+-- debhello_0.0.orig.tar.gz -> debhello-0.0.tar.gz

8 directories, 24 files

The debian/rules file is the build script provided by the package maintainer. Here is its template file generated
by the debmake command.

debian/rules (template file):

$ cd /path/to/debhello-0.0
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.

23

CHAPTER 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@

#override_dh_auto_install:
dh_auto_install -- prefix=/usr

#override_dh_install:
dh_install --list-missing -X.pyc -X.pyo

This is essentially the standard debian/rules file with the dh command. (There are some commented out
contents for you to customize it.)

The debian/control file provides the main meta data for the Debian package. Here is its template file generated
by the debmake command.

debian/control (template file):

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends: debhelper-compat (= 13)
Standards-Version: 4.6.2
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends: ${misc:Depends}, ${shlibs:Depends}
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Warning

If you leave “Section: unknown” in the template debian/control file unchanged,
the lintian error may cause the build to fail.

Since this is the ELF binary executable package, the debmake command sets “Architecture: any” and “Multi-
Arch: foreign”. Also, it sets required substvar parameters as “Depends: ${shlibs:Depends}, ${misc:Depends}”.
These are explained in “Chapter 6”.

Note

Please note this debian/control file uses the RFC-822 style as documented in
“5.2 Source package control files — debian/control” of the “Debian Policy Man-
ual”. The use of the empty line and the leading space are significant.

The debian/copyright file provides the copyright summary data of the Debian package. Here is its template
file generated by the debmake command.

debian/copyright (template file):

24

https://www.debian.org/doc/debian-policy/ch-controlfields.html#source-package-control-files-debian-control

CHAPTER 5. SIMPLE PACKAGING 5.7. STEP 3: MODIFICATION TO THE …

$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: <preferred name and address to reach the upstream project>
Source: <url://example.com>
#
Please double check copyright with the licensecheck(1) command.

Files: Makefile
README.md
src/hello.c

Copyright: __NO_COPYRIGHT_NOR_LICENSE__
License: __NO_COPYRIGHT_NOR_LICENSE__

#--...
Files marked as NO_LICENSE_TEXT_FOUND may be covered by the following
license/copyright files.

5.7 Step 3: Modification to the template files
Some manual modification is required to make the proper Debian package as a maintainer.

In order to install files as a part of the system files, the $(prefix) value of /usr/local in the Makefile should
be overridden to be /usr. This can be accommodated by the following the debian/rules file with the over-
ride_dh_auto_install target setting “prefix=/usr”.

debian/rules (maintainer version):

$ cd /path/to/debhello-0.0
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

override_dh_auto_install:
dh_auto_install -- prefix=/usr

Exporting the DH_VERBOSE environment variable in the debian/rules file as above forces the debhelper
tool to make a fine grained build report.

Exporting DEB_BUILD_MAINT_OPTION as above sets the hardening options as described in the “FEA-
TURE AREAS/ENVIRONMENT” in dpkg-buildflags(1). 1

Exporting DEB_CFLAGS_MAINT_APPEND as above forces the C compiler to emit all the warnings.
Exporting DEB_LDFLAGS_MAINT_APPEND as above forces the linker to link only when the library is

actually needed. 2
The dh_auto_install command for the Makefile based build system essentially runs “$(MAKE) install DEST-

DIR=debian/debhello”. The creation of this override_dh_auto_install target changes its behavior to “$(MAKE)
install DESTDIR=debian/debhello prefix=/usr”.

Here are the maintainer versions of the debian/control and debian/copyright files.
debian/control (maintainer version):

1This is a cliché to force a read-only relocation link for the hardening and to prevent the lintian warning “W: debhello: hardening-no-relro
usr/bin/hello”. This is not really needed for this example but should be harmless. The lintian tool seems to produce a false positive warning
for this case which has no linked library.

2This is a cliché to prevent overlinking for the complex library dependency case such as Gnome programs. This is not really needed for
this simple example but should be harmless.

25

CHAPTER 5. SIMPLE PACKAGING 5.7. STEP 3: MODIFICATION TO THE …

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends: debhelper-compat (= 13)
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends: ${misc:Depends}, ${shlibs:Depends}
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

debian/copyright (maintainer version):

$ vim debian/copyright
... hack, hack, hack, ...
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Let’s remove unused template files and edit remaining template files:

• debian/README.source

• debian/source/local-option.ex

• debian/source/local-patch-header.ex

• debian/patches/series (No upstream patch)

• clean

• dirs

• install

26

CHAPTER 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH DEBUILD

• links

Template files under debian/. (v=0.0):

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 11 files

Tip

Configuration files used by the dh_* commands from the debhelper package
usually treat # as the start of a comment line.

5.8 Step 4: Building package with debuild
You can create a non-native Debian package using the debuild command or its equivalents (see “Section 5.4”) in
this source tree. The command output is very verbose and explains what it does as follows.

Building package with debuild

$ cd /path/to/debhello-0.0
$ debuild
dpkg-buildpackage -us -uc -ui -i
dpkg-buildpackage: info: source package debhello
dpkg-buildpackage: info: source version 0.0-1
dpkg-buildpackage: info: source distribution unstable
dpkg-buildpackage: info: source changed by Osamu Aoki <osamu@debian.org>
dpkg-source -i --before-build .
dpkg-buildpackage: info: host architecture amd64
debian/rules clean
dh clean

dh_auto_clean
make -j12 distclean

...
debian/rules binary
dh binary

dh_update_autotools_config
dh_autoreconf
dh_auto_configure
dh_auto_build

make -j12 "INSTALL=install --strip-program=true"
make[1]: Entering directory '/path/to/debhello-0.0'

27

CHAPTER 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH DEBUILD

CFLAGS=-g -O2
...
Finished running lintian.

You can verify that CFLAGS is updated properly with -Wall and -pedantic by the DEB_CFLAGS_MAINT_APPEND
variable.

The manpage should be added to the package as reported by the lintian package, as shown in later examples
(see “Chapter 13”). Let’s move on for now.

Let’s inspect the result.
The generated files of debhello version 0.0 by the debuild command:

$ cd /path/to
$ tree -FL 1
./
+-- debhello-0.0/
+-- debhello-0.0.tar.gz
+-- debhello-dbgsym_0.0-1_amd64.deb
+-- debhello_0.0-1.debian.tar.xz
+-- debhello_0.0-1.dsc
+-- debhello_0.0-1_amd64.build
+-- debhello_0.0-1_amd64.buildinfo
+-- debhello_0.0-1_amd64.changes
+-- debhello_0.0-1_amd64.deb
+-- debhello_0.0.orig.tar.gz -> debhello-0.0.tar.gz

2 directories, 9 files

You see all the generated files.

• The debhello_0.0.orig.tar.gz is a symlink to the upstream tarball.

• The debhello_0.0-1.debian.tar.xz contains the maintainer generated contents.

• The debhello_0.0-1.dsc is the meta data file for the Debian source package.

• The debhello_0.0-1_amd64.deb is the Debian binary package.

• The debhello-dbgsym_0.0-1_amd64.deb is the Debian debug symbol binary package. See “Section 9.21”.

• The debhello_0.0-1_amd64.build file is the build log file.

• The debhello_0.0-1_amd64.buildinfo file is the meta data file generated by dpkg-genbuildinfo(1).

• The debhello_0.0-1_amd64.changes is the meta data file for the Debian binary package.

The debhello_0.0-1.debian.tar.xz contains the Debian changes to the upstream source as follows.
The compressed archive contents of debhello_0.0-1.debian.tar.xz:

$ tar -tzf debhello-0.0.tar.gz
debhello-0.0/
debhello-0.0/src/
debhello-0.0/src/hello.c
debhello-0.0/Makefile
debhello-0.0/README.md
$ tar --xz -tf debhello_0.0-1.debian.tar.xz
debian/
debian/README.Debian
debian/changelog
debian/control
debian/copyright
debian/gbp.conf
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/

28

CHAPTER 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH DEBUILD

debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

The debhello_0.0-1_amd64.deb contains the binary files to be installed to the target system.
The debhello-debsym_0.0-1_amd64.deb contains the debug symbol files to be installed to the target system.
The binary package contents of all binary packages:

$ dpkg -c debhello-dbgsym_0.0-1_amd64.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/
drwxr-xr-x root/root/usr/lib/
drwxr-xr-x root/root/usr/lib/debug/
drwxr-xr-x root/root/usr/lib/debug/.build-id/
drwxr-xr-x root/root/usr/lib/debug/.build-id/be/
-rw-r--r-- root/root/usr/lib/debug/.build-id/be/f1e0185834f3c3e2614cf8...
drwxr-xr-x root/root/usr/share/
drwxr-xr-x root/root/usr/share/doc/
lrwxrwxrwx root/root/usr/share/doc/debhello-dbgsym -> debhello
$ dpkg -c debhello_0.0-1_amd64.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/
drwxr-xr-x root/root/usr/bin/
-rwxr-xr-x root/root/usr/bin/hello
drwxr-xr-x root/root/usr/share/
drwxr-xr-x root/root/usr/share/doc/
drwxr-xr-x root/root/usr/share/doc/debhello/
-rw-r--r-- root/root/usr/share/doc/debhello/README.Debian
-rw-r--r-- root/root/usr/share/doc/debhello/changelog.Debian.gz
-rw-r--r-- root/root/usr/share/doc/debhello/copyright

The generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=0.0):

$ dpkg -f debhello-dbgsym_0.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 0.0-1)
$ dpkg -f debhello_0.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.34)

Caution

Many more details need to be addressed before uploading the package to the
Debian archive.

Note

If manual adjustments of auto-generated configuration files by the debmake com-
mand are skipped, the generated binary package may lack meaningful package
description and some of the policy requirements may be missed. This sloppy
package functions well under the dpkg command, and may be good enough for
your local deployment.

29

CHAPTER 5. SIMPLE PACKAGING 5.9. STEP 3 (ALTERNATIVES): MODIFICATION …

5.9 Step 3 (alternatives): Modification to the upstream source
The above example did not touch the upstream source to make the proper Debian package. An alternative approach
as the maintainer is to modify files in the upstream source. For example, Makefile may be modified to set the
$(prefix) value to /usr.

Note

The above “Section 5.7” using the debian/rules file is the better approach for
packaging for this example. But let’s continue on with this alternative approaches
as a leaning experience.

In the following, let’s consider 3 simple variants of this alternative approach to generate debian/patches/*
files representing modifications to the upstream source in the Debian source format “3.0 (quilt)”. These substitute
“Section 5.7” in the above step-by-step example:

• “Section 5.10”

• “Section 5.11”

• “Section 5.12”

Please note the debian/rules file used for these examples doesn’t have the override_dh_auto_install target as
follows:

debian/rules (alternative maintainer version):

$ cd /path/to/debhello-0.0
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

5.10 Patch by “diff -u” approach
Here, the patch file 000-prefix-usr.patch is created using the diff command.

Patch by diff -u

$ cp -a debhello-0.0 debhello-0.0.orig
$ vim debhello-0.0/Makefile
... hack, hack, hack, ...
$ diff -Nru debhello-0.0.orig debhello-0.0 >000-prefix-usr.patch
$ cat 000-prefix-usr.patch
diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile
--- debhello-0.0.orig/Makefile 2024-07-24 10:12:40.382927188 +0900
+++ debhello-0.0/Makefile 2024-07-24 10:12:40.478928659 +0900
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

$ rm -rf debhello-0.0
$ mv -f debhello-0.0.orig debhello-0.0

30

CHAPTER 5. SIMPLE PACKAGING 5.11. PATCH BY DQUILT APPROACH

Please note that the upstream source tree is restored to the original state after generating a patch file 000-prefix-
usr.patch.

This 000-prefix-usr.patch is edited to be DEP-3 conforming and moved to the right location as below.
000-prefix-usr.patch (DEP-3):

$ echo '000-prefix-usr.patch' >debian/patches/series
$ vim ../000-prefix-usr.patch
... hack, hack, hack, ...
$ mv -f ../000-prefix-usr.patch debian/patches/000-prefix-usr.patch
$ cat debian/patches/000-prefix-usr.patch
From: Osamu Aoki <osamu@debian.org>
Description: set prefix=/usr patch
diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile
--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

Note

When generating the Debian source package by dpkg-source via dpkg-
buildpackage in the following step of “Section 5.8”, the dpkg-source com-
mand assumes that no patch was applied to the upstream source, since the
.pc/applied-patches is missing.

5.11 Patch by dquilt approach
Here, the patch file 000-prefix-usr.patch is created using the dquilt command.

dquilt is a simple wrapper of the quilt program. The syntax and function of the dquilt command is the same
as the quilt(1) command, except for the fact that the generated patch is stored in the debian/patches/ directory.

Patch by dquilt

$ dquilt new 000-prefix-usr.patch
Patch debian/patches/000-prefix-usr.patch is now on top
$ dquilt add Makefile
File Makefile added to patch debian/patches/000-prefix-usr.patch
... hack, hack, hack, ...
$ head -1 Makefile
prefix = /usr
$ dquilt refresh
Refreshed patch debian/patches/000-prefix-usr.patch
$ dquilt header -e --dep3
... edit the DEP-3 patch header with editor
$ tree -a
.
+-- debian
| +-- changelog
| +-- clean
| +-- control
| +-- copyright
| +-- dirs
| +-- gbp.conf
| +-- install
| +-- links
| +-- patches
| | +-- 000-prefix-usr.patch

31

https://dep-team.pages.debian.net/deps/dep3/

CHAPTER 5. SIMPLE PACKAGING 5.11. PATCH BY DQUILT APPROACH

| | +-- series
| +-- README.Debian
| +-- README.source
| +-- rules
| +-- salsa-ci.yml
| +-- source
| | +-- format
| | +-- local-options.ex
| | +-- local-patch-header.ex
| +-- tests
| | +-- control
| +-- upstream
| | +-- metadata
| +-- watch
+-- Makefile
+-- .pc
| +-- 000-prefix-usr.patch
| | +-- Makefile
| | +-- .timestamp
| +-- applied-patches
| +-- .quilt_patches
| +-- .quilt_series
| +-- .version
+-- README.md
+-- src

+-- hello.c

9 directories, 29 files
$ cat debian/patches/series
000-prefix-usr.patch
$ cat debian/patches/000-prefix-usr.patch
Description: set prefix=/usr patch
Author: Osamu Aoki <osamu@debian.org>
Index: debhello-0.0/Makefile
===
--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

Here, Makefile in the upstream source tree doesn’t need to be restored to the original state for the packaging.

Note

When generating the Debian source package by dpkg-source via dpkg-
buildpackage in the following step of “Section 5.8”, the dpkg-source com-
mand assumes that patches were applied to the upstream source, since the
.pc/applied-patches exists.

The upstream source tree can be restored to the original state for the packaging.
The upstream source tree (restored):

$ dquilt pop -a
Removing patch debian/patches/000-prefix-usr.patch
Restoring Makefile

No patches applied
$ head -1 Makefile
prefix = /usr/local
$ tree -a .pc

32

CHAPTER 5. SIMPLE PACKAGING 5.12. PATCH BY “DPKG-SOURCE …

.pc
+-- .quilt_patches
+-- .quilt_series
+-- .version

1 directory, 3 files

Here, Makefile is restored and the .pc/applied-patches is missing.

5.12 Patch by “dpkg-source --auto-commit” approach
Here, the patch file isn’t created in this step but the source files are setup to create debian/patches/* files in the
following step of “Section 5.8”.

Let’s edit the upstream source.
Modified Makefile

$ vim Makefile
... hack, hack, hack, ...
$ head -n1 Makefile
prefix = /usr

Let’s edit debian/source/local-options:
debian/source/local-options for auto-commit

$ mv debian/source/local-options.ex debian/source/local-options
$ vim debian/source/local-options
... hack, hack, hack, ...
$ cat debian/source/local-options
== Patch applied strategy (merge) ==
#
The source outside of debian/ directory is modified by maintainer and
different from the upstream one:
* Workflow using dpkg-source commit (commit all to VCS after dpkg-source ...
https://www.debian.org/doc/manuals/debmake-doc/ch04.en.html#dpkg-sour...
* Workflow described in dgit-maint-merge(7)
#
single-debian-patch
auto-commit

Let’s edit debian/source/local-patch-header:
debian/source/local-patch-header for auto-commit

$ mv debian/source/local-patch-header.ex debian/source/local-patch-header
$ vim debian/source/local-patch-header
... hack, hack, hack, ...
$ cat debian/source/local-patch-header
Description: debian-changes
Author: Osamu Aoki <osamu@debian.org>

Let’s remove debian/patches/* files and other unused template files.
Remove unused template files

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree debian
debian
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- rules
+-- salsa-ci.yml

33

CHAPTER 5. SIMPLE PACKAGING 5.12. PATCH BY “DPKG-SOURCE …

+-- source
| +-- format
| +-- local-options
| +-- local-patch-header
+-- tests
| +-- control
+-- upstream
| +-- metadata
+-- watch

4 directories, 13 files

There are no debian/patches/* files at the end of this step.

Note

When generating the Debian source package by dpkg-source via dpkg-
buildpackage in the following step of “Section 5.8”, the dpkg-source command
uses options specified in debian/source/local-options to auto-commit modifica-
tion applied to the upstream source as patches/debian-changes.

Let’s inspect the Debian source package generated after the following “Section 5.8” step and extracting files
from debhello-0.0.debian.tar.xz.

Inspect debhello-0.0.debian.tar.xz after debuild

$ tar --xz -xvf debhello_0.0-1.debian.tar.xz
debian/
debian/README.Debian
debian/changelog
debian/control
debian/copyright
debian/gbp.conf
debian/patches/
debian/patches/debian-changes
debian/patches/series
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

Let’s check generated debian/patches/* files.
Inspect debian/patches/* after debuild

$ cat debian/patches/series
debian-changes
$ cat debian/patches/debian-changes
Description: debian-changes
Author: Osamu Aoki <osamu@debian.org>

--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

34

CHAPTER 5. SIMPLE PACKAGING 5.12. PATCH BY “DPKG-SOURCE …

The Debian source package debhello-0.0.debian.tar.xz is confirmed to be generated properly with debian/-
patches/* files for the Debian modification.

35

Chapter 6

Basics for packaging

Here, a broad overview is presented without using VCS operations for the basic rules of Debian packaging focusing
on the non-native Debian package in the “3.0 (quilt)” format.

Note

Some details are intentionally skipped for clarity. Please read the manpages
of the dpkg-source(1), dpkg-buildpackage(1), dpkg(1), dpkg-deb(1), deb(5),
etc.

The Debian source package is a set of input files used to build the Debian binary package and is not a single
file.

The Debian binary package is a special archive file which holds a set of installable binary data with its associated
information.

A single Debian source package may generate multiple Debian binary packages defined in the debian/control
file.

The non-native Debian package in the Debian source format “3.0 (quilt)” is the most normal Debian source
package format.

Note

There are many wrapper scripts. Use them to streamline your workflow but make
sure to understand the basics of their internals.

6.1 Packaging workflow
The Debian packaging workflow to create a Debian binary package involves generating several specifically named
files (see “Section 6.3”) as defined in the “Debian Policy Manual”. This workflow can be summarized in 10 steps
with some over simplification as follows.

1. The upstream tarball is downloaded as the package-version.tar.gz file.

2. The upstream tarball is untarred to create many files under the package-version/ directory.

3. The upstream tarball is copied (or symlinked) to the particular filename packagename_version.orig.tar.gz.

• the character separating package and version is changed from - (hyphen) to _ (underscore)
• .orig is added in the file extension.

4. The Debian package specification files are added to the upstream source under the package-version/debian/
directory.

• Required specification files under the debian/ directory:

36

CHAPTER 6. BASICS FOR PACKAGING 6.1. PACKAGING WORKFLOW

debian/rules The executable script for building the Debian package (see “Section 6.5”)
debian/control The package configuration file containing the source package name, the source build

dependencies, the binary package name, the binary dependencies, etc. (see “Section 6.6”)
debian/changelog The Debian package history file defining the upstream package version and the

Debian revision in its first line (see “Section 6.7”)
debian/copyright The copyright and license summary (see “Section 6.8”)

• Optional specification files under the debian/* (see “Section 6.14”):
• The debmake command invoked in the package-version/ directory may be used to provide the initial

template of these configuration files.
– Required specification files are generated even with the -x0 option.
– The debmake command does not overwrite any existing configuration files.

• These files must be manually edited to their perfection according to the “Debian Policy Manual” and
“Debian Developer’s Reference”.

5. The dpkg-buildpackage command (usually from its wrapper debuild or sbuild) is invoked in the package-
version/ directory to make the Debian source and binary packages by invoking the debian/rules script.

• The current directory is set as: “CURDIR=/path/to/package-version/”
• Create the Debian source package in the Debian source format “3.0 (quilt)” using dpkg-source(1)

– package_version.orig.tar.gz (copy or symlink of package-version.tar.gz)
– package_version-revision.debian.tar.xz (tarball of debian/ found in package-version/)
– package_version-revision.dsc

• Build the source using “debian/rules build” into $(DESTDIR)
– “DESTDIR=debian/binarypackage/” for single binary package 1
– “DESTDIR=debian/tmp/” for multi binary package

• Create the Debian binary package using dpkg-deb(1), dpkg-genbuildinfo(1), and dpkg-genchanges(1).
– binarypackage_version-revision_arch.deb
– … (There may be multiple Debian binary package files.)
– package_version-revision_arch.changes
– package_version-revision_arch.buildinfo

6. Check the quality of the Debian package with the lintian command. (recommended)

• Follow the rejection guidelines from ftp-master.
– “REJECT-FAQ”
– “NEW checklist”
– “Lintian Autorejects” (“lintian tag list”)

7. Test the goodness of the generated Debian binary package manually by installing it and running its programs.

8. After confirming the goodness, prepare files for the normal source-only upload to the Debian archive.

9. Sign the Debian package file with the debsign command using your private GPG key.

• Use “debsign package_version-revision_source.changes” (normal source-only upload situation)
• Use “debsign package_version-revision_arch.changes” (exceptional binary upload situation such as

NEW uploads, and security uploads) files for the binary Debian package upload.

10. Upload the set of the Debian package files with the dput command to the Debian archive.

• Use “dput package_version-revision_source.changes” (source-only upload)
• Use “dput package_version-revision_arch.changes” (binary upload)

1This is the default up to debhelper v13. At debhelper v14, it warns the default change. After debhelper v15, it will change the default
to DESTDIR=debian/tmp/ .

37

https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/manuals/developers-reference/
https://ftp-master.debian.org/
https://ftp-master.debian.org/REJECT-FAQ.html
https://ftp-master.debian.org/NEW-checklist.html
https://ftp-master.debian.org/#lintianrejects
https://ftp-master.debian.org/static/lintian.tags

CHAPTER 6. BASICS FOR PACKAGING 6.2. DEBHELPER PACKAGE

Test building and confirming of the binary package goodness as above is the moral obligation as a diligent
Debian developer but there is no physical barrier for people to skip such operations at this moment for the source-
only upload.

Here, please replace each part of the filename as:

• the package part with the Debian source package name

• the binarypackage part with the Debian binary package name

• the version part with the upstream version

• the revision part with the Debian revision

• the arch part with the package architecture (e.g., amd64)

See also “Source-only uploads”.

Tip

Many patch management and VCS usage strategies for the Debian packaging
are practiced. You don’t need to use all of them.

Tip

There is very extensive documentation in “Chapter 6. Best Packaging Practices”
in the “Debian Developer’s Reference”. Please read it.

6.2 debhelper package
Although a Debian package can be made by writing a debian/rules script without using the debhelper package, it
is impractical to do so. There are too many modern “Debian Policy” required features to be addressed, such as ap-
plication of the proper file permissions, use of the proper architecture dependent library installation path, insertion
of the installation hook scripts, generation of the debug symbol package, generation of package dependency infor-
mation, generation of the package information files, application of the proper timestamp for reproducible build,
etc.

Debhelper package provides a set of useful scripts in order to simplify Debian’s packaging workflow and
reduce the burden of package maintainers. When properly used, they will help packagers handle and implement
“Debian Policy” required features automatically.

The modern Debian packaging workflow can be organized into a simple modular workflow by:

• using the dh command to invoke many utility scripts automatically from the debhelper package, and

• configuring their behavior with declarative configuration files in the debian/ directory.

You should almost always use debhelper as your package’s build dependency. This document also assumes that
you are using a fairly contemporary version of debhelper to handle packaging works in the following contents.

Note

For debhelper “compat >= 9”, the dh command exports compiler flags (CFLAGS,
CXXFLAGS, FFLAGS, CPPFLAGS and LDFLAGS) with values as returned
by dpkg-buildflags if they are not set previously. (The dh command calls
set_buildflags defined in the Debian::Debhelper::Dh_Lib module.)

38

https://wiki.debian.org/SourceOnlyUpload
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/

CHAPTER 6. BASICS FOR PACKAGING 6.3. PACKAGE NAME AND VERSION

Note

debhelper(1) changes its behavior with time. Please make sure to read
debhelper-compat-upgrade-checklist(7) to understand the situation.

6.3 Package name and version
If the upstream source comes as hello-0.9.12.tar.gz, you can take hello as the upstream source package name and
0.9.12 as the upstream version.

There are some limitations for what characters may be used as a part of the Debian package. The most no-
table limitation is the prohibition of uppercase letters in the package name. Here is a summary as a set of regular
expressions:

• Upstream package name (-p): [-+.a-z0-9]{2,}

• Binary package name (-b): [-+.a-z0-9]{2,}

• Upstream version (-u): [0-9][-+.:~a-z0-9A-Z]*

• Debian revision (-r): [0-9][+.~a-z0-9A-Z]*

See the exact definition in “Chapter 5 - Control files and their fields” in the “Debian Policy Manual”.
You must adjust the package name and upstream version accordingly for the Debian packaging.
In order to manage the package name and version information effectively under popular tools such as the

aptitude command, it is a good idea to keep the length of package name to be equal or less than 30 characters; and
the total length of version and revision to be equal or less than 14 characters. 2

In order to avoid name collisions, the user visible binary package name should not be chosen from any generic
words.

If upstream does not use a normal versioning scheme such as 2.30.32 but uses some kind of date such as
11Apr29, a random codename string, or a VCS hash value as part of the version, make sure to remove them from
the upstream version. Such information can be recorded in the debian/changelog file. If you need to invent a
version string, use the YYYYMMDD format such as 20110429 as upstream version. This ensures that the dpkg
command interprets later versions correctly as upgrades. If you need to ensure a smooth transition to a normal
version scheme such as 0.1 in the future, use the 0~YYMMDD format such as 0~110429 as upstream version,
instead.

Version strings can be compared using the dpkg command as follows.

$ dpkg --compare-versions ver1 op ver2

The version comparison rule can be summarized as:

• Strings are compared from the head to the tail.

• Letters are larger than digits.

• Numbers are compared as integers.

• Letters are compared in ASCII code order.

There are special rules for period (.), plus (+), and tilde (~) characters, as follows.

0.0 < 0.5 < 0.10 < 0.99 < 1 < 1.0~rc1 < 1.0 < 1.0+b1 < 1.0+nmu1 < 1.1 < 2.0

One tricky case occurs when the upstream releases hello-0.9.12-ReleaseCandidate-99.tar.gz as the pre-release
of hello-0.9.12.tar.gz. You can ensure the Debian package upgrade to work properly by renaming the upstream
source to hello-0.9.12~rc99.tar.gz.

2For more than 90% of packages, the package name is equal or less than 24 characters; the upstream version is equal or less than 10
characters and the Debian revision is equal or less than 3 characters.

39

https://www.debian.org/doc/debian-policy/#document-ch-controlfields

CHAPTER 6. BASICS FOR PACKAGING 6.4. NATIVE DEBIAN PACKAGE

6.4 Native Debian package
The non-native Debian package in the Debian source format “3.0 (quilt)” is the most normal Debian source package
format. The debian/source/format file should have “3.0 (quilt)” in it as described in dpkg-source(1). The above
workflow and the following packaging examples always use this format.

A native Debian package is the rare Debian binary package format. It may be used only when the package is
useful and valuable only for Debian. Thus, its use is generally discouraged.

Caution

A native Debian package is often accidentally built when its upstream tarball is not
accessible from the dpkg-buildpackage command with its correct name pack-
age_version.orig.tar.gz . This is a typical newbie mistake caused by making a
symlink name with “-” instead of the correct one with “_”.

A native Debian package has no separation between the upstream code and the Debian changes and consists
only of the following:

• package_version.tar.gz (copy or symlink of package-version.tar.gz with debian/* files.)

• package_version.dsc

If you need to create a native Debian package, create it in the Debian source format “3.0 (native)” using dpkg-
source(1).

Tip

There is no need to create the tarball in advance if the native Debian package
format is used. The debian/source/format file should have “3.0 (native)” in it as
described in dpkg-source(1) and The debian/source/format file should have
the version without the Debian revision (1.0 instead of 1.0-1). Then, the tarball
containing is generated when “dpkg-source -b” is invoked in the source tree.

6.5 debian/rules file
The debian/rules file is the executable script which re-targets the upstream build system to install files in the
$(DESTDIR) and creates the archive file of the generated files as the deb file. The deb file is used for the binary
distribution and installed to the system using the dpkg command.

The Debian policy compliant debian/rules file supporting all the required targets can be written as simple as
3:

Simple debian/rules:

#!/usr/bin/make -f
#export DH_VERBOSE = 1

%:
dh $@

The dh command functions as the sequencer to call all required “dh target” commands at the right moment. ⁴

• dh clean : clean files in the source tree.

• dh build : build the source tree

• dh build-arch : build the source tree for architecture dependent packages

• dh build-indep : build the source tree for architecture independent packages

3The debmake command generates a bit more complicated debian/rules file. But this is the core part.
⁴This simplicity is available since version 7 of the debhelper package. This guide assumes the use of debhelper version 13 or newer.

40

CHAPTER 6. BASICS FOR PACKAGING 6.6. DEBIAN/CONTROL FILE

• dh install : install the binary files to $(DESTDIR)

• dh install-arch : install the binary files to $(DESTDIR) for architecture dependent packages

• dh install-indep : install the binary files to $(DESTDIR) for architecture independent packages

• dh binary : generate the deb file

• dh binary-arch : generate the deb file for architecture dependent packages

• dh binary-indep : generate the deb file for architecture independent packages

Here, $(DESTDIR) path depends on the build type.

• “DESTDIR=debian/binarypackage/” for single binary package ⁵

• “DESTDIR=debian/tmp/” for multi binary package

See “Section 8.2” and “Section 8.3” for customization.

Tip

Setting “export DH_VERBOSE = 1” outputs every command that modifies files
on the build system. Also it enables verbose build logs for some build systems.

6.6 debian/control file
The debian/control file consists of blocks of meta data separated by a blank line. Each block of meta data defines
the following in this order:

• meta data for the Debian source package

• meta data for the Debian binary packages

See “Chapter 5 - Control files and their fields” of the “Debian Policy Manual” for the definition of each meta
data.

Note

The debmake command sets the debian/control file with “Build-Depends:
debhelper-compat (= 13)” to set the debhelper compatibility level.

Tip

If an existing package has lower than debhelper compatibility level 13, probably
it’s time to update its packaging.

⁵This is the default up to debhelper v13. At debhelper v14, it warns the default change. After debhelper v15, it will change the default
to DESTDIR=debian/tmp/ .

41

https://www.debian.org/doc/debian-policy/ch-controlfields.html

CHAPTER 6. BASICS FOR PACKAGING 6.7. DEBIAN/CHANGELOG FILE

6.7 debian/changelog file
The debian/changelog file records the Debian package history.

• This should be edited using the debchange command (alias dch).

• This defines the upstream package version and the Debian revision in its first line.

• The changes need to be documented in the specific, formal, and concise style.

– If Debian maintainer modification fixes reported bugs, add “Closes: #<bug_number>” to close those
bugs.

• Even if you are uploading your package by yourself, you must document all non-trivial user-visible changes
such as:

– the security related bug fixes.
– the user interface changes.

• If you are asking your sponsor to upload it, you should document changes more comprehensively, including
all packaging related ones, to help reviewing your package.

– The sponsor shouldn’t be forced to second guess your thought behind your package.
– The sponsor’s time is more valuable than yours.

After finishing your packaging and verifying its quality, please execute the “dch -r” command and save the
finalized debian/changelog file with the suite normally set to unstable. ⁶ If you are packaging for backports,
security updates, LTS, etc., please use the appropriate distribution names instead.

The debmake command creates the initial template file with the upstream package version and the Debian
revision. The distribution is set to UNRELEASED to prevent accidental upload to the Debian archive.

Tip

The date string used in the debian/changelog file can be manually generated
by the “LC_ALL=C date -R” command.

Tip

Use a debian/changelog entry with a version string such as 1.0.1-1~rc1 when
you experiment. Then, unclutter such changelog entries into a single entry for
the official package.

The debian/changelog file is installed in the /usr/share/doc/binarypackage directory as changelog.Debian.gz
by the dh_installchangelogs command.

The upstream changelog is installed in the /usr/share/doc/binarypackage directory as changelog.gz.
The upstream changelog is automatically found by the dh_installchangelogs using the case insensitive match

of its file name to changelog, changes, changelog.txt, changes.txt, history, history.txt, or changelog.md and
searched in the ./ doc/ or docs/ directories.

6.8 debian/copyright file
Debian takes the copyright and license matters very seriously. The “Debian Policy Manual” enforces having a
summary of them in the debian/copyright file in the package.

• “12.5. Copyright information”

⁶If you are using the vim editor, make sure to save this with the “:wq” command.

42

https://www.debian.org/doc/debian-policy/ch-docs.html#s-copyrightfile

CHAPTER 6. BASICS FOR PACKAGING 6.9. DEBIAN/PATCHES/* FILES

• “2.3. Copyright considerations”

• “License information”

The debmake command creates the initial debian/copyright template file.

• Please double check copyright with the licensecheck(1) command.

• Please format it as a “machine-readable debian/copyright file (DEP-5)”.

Unless specifically requested to be pedantic with the -P option, the debmake command skips reporting for
auto-generated files with permissive licenses to be practical.

Caution

The debian/copyright file should be sorted to keep the generic file patterns at
the top of the list. See “Section 15.6”.

Note

If you find issues with this license checker, please file a bug report to the debmake
package with the problematic part of text containing the copyright and license.

6.9 debian/patches/* files
As demonstrated in “Section 5.9”, the debian/patches/ directory holds

• patch-file-name.patch files providing -p1 patches and

• the series file which which defines how these patches are applied.

See how these files are used in:

• “Section 12.6” to build the Debian source package

• “Section 12.7” to extract source files from the Debian source package

Note

Header texts of these patches should conform to “DEP-3”.

Note

If you want to use VCS tools such as git, gbp and dgit to create and manage
these patches after learning basics here, please refer to later in “Chapter 10”.

43

https://www.debian.org/doc/debian-policy/ch-archive.html#s-pkgcopyright
https://www.debian.org/legal/licenses/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://dep-team.pages.debian.net/deps/dep3/

CHAPTER 6. BASICS FOR PACKAGING 6.10. DEBIAN/SOURCE/INCLUDE-BINARIES …

6.10 debian/source/include-binaries file
The “dpkg-source --commit” command functions like dquilt but has one advantage over the dquilt command.
While the dquilt command can’t handle modified binary files, the “dpkg-source --commit” command detects
modified binary files and lists them in the debian/source/include-binaries file to include them in the Debian
tarball as a part of the Debian source package.

6.11 debian/watch file
The uscan(1) command downloads the latest upstream version using the debian/watch file. E.g.:

Basic debian/watch file:
version=4
https://ftp.gnu.org/gnu/hello/ @PACKAGE@@ANY_VERSION@@ARCHIVE_EXT@

The uscan command may verify the authenticity of the upstream tarball with optional configuration (see “Sec-
tion 6.12”).

See uscan(1), “Section 8.4”, “Section 7.1”, and “Section 10.10” for more.

6.12 debian/upstream/signing-key.asc file
Some packages are signed by a GPG key and their authenticity can be verified using their public GPG key.

For example, “GNU hello” can be downloaded via HTTP from https://ftp.gnu.org/gnu/hello/ . There are sets
of files:

• hello-version.tar.gz (upstream source)

• hello-version.tar.gz.sig (detached signature)

Let’s pick the latest version set.
Download the upstream tarball and its signature.

$ wget https://ftp.gnu.org/gnu/hello/hello-2.9.tar.gz
...
$ wget https://ftp.gnu.org/gnu/hello/hello-2.9.tar.gz.sig
...
$ gpg --verify hello-2.9.tar.gz.sig
gpg: Signature made Thu 10 Oct 2013 08:49:23 AM JST using DSA key ID 80EE4A00
gpg: Can't check signature: public key not found

If you know the public GPG key of the upstream maintainer from the mailing list, use it as the debian/upstream/signing-
key.asc file. Otherwise, use the hkp keyserver and check it via your web of trust.

Download public GPG key for the upstream
$ gpg --keyserver hkp://keys.gnupg.net --recv-key 80EE4A00
gpg: requesting key 80EE4A00 from hkp server keys.gnupg.net
gpg: key 80EE4A00: public key "Reuben Thomas <rrt@sc3d.org>" imported
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: imported: 1
$ gpg --verify hello-2.9.tar.gz.sig
gpg: Signature made Thu 10 Oct 2013 08:49:23 AM JST using DSA key ID 80EE4A00
gpg: Good signature from "Reuben Thomas <rrt@sc3d.org>"
...

Primary key fingerprint: 9297 8852 A62F A5E2 85B2 A174 6808 9F73 80EE 4A00

Tip

If your network environment blocks access to the HKP port 11371, use
“hkp://keyserver.ubuntu.com:80” instead.

44

https://www.gnu.org/software/hello/
https://ftp.gnu.org/gnu/hello/
https://en.wikipedia.org/wiki/Web_of_trust

CHAPTER 6. BASICS FOR PACKAGING 6.13. DEBIAN/SALSA-CI.YML FILE

After confirming the key ID 80EE4A00 is a trustworthy one, download its public key into the debian/upstream/signing-
key.asc file.

Set public GPG key to debian/upstream/signing-key.asc

$ gpg --armor --export 80EE4A00 >debian/upstream/signing-key.asc

With the above debian/upstream/signing-key.asc file and the following debian/watch file, the uscan com-
mand can verify the authenticity of the upstream tarball after its download. E.g.:

Improved debian/watch file with GPG support:

version=4
opts="pgpsigurlmangle=s/$/.sig/" \
https://ftp.gnu.org/gnu/hello/ @PACKAGE@@ANY_VERSION@@ARCHIVE_EXT@

6.13 debian/salsa-ci.yml file
Install Salsa CI configuration file. See “Section 10.3”.

6.14 Other debian/* files
Optional configuration files may be added under the debian/ directory. Most of them are to control dh_* commands
offered by the debhelper package but there are some for dpkg-source, lintian and gbp commands.

Tip

Even an upstream source without its build system can be packaged just by using
these files. See “Section 13.2” as an example.

The alphabetical list of notable optional debian/binarypackage.* configuration files listed below provides very
powerful means to set the installation path of files. Please note:

• The ”-x[01234]” superscript notation that appears in the following list indicates the minimum value for the
debmake -x option that generates the associated template file. See “Section 15.9” or debmake(1) for details.

• For a single binary package, the “binarypackage.” part of the filename in the list may be removed.

• For a multi binary package, a configuration file missing the “binarypackage” part of the filename is applied
to the first binary package listed in the debian/control.

• When there are many binary packages, their configurations can be specified independently by prefixing their
name to their configuration filenames such as “package-1.install”, “package-2.install”, etc.

• Some template configuration files may not be created by the debmake command. In such cases, you need
to create them with an editor.

• Some configuration template files generated by the debmake command with an extra .ex suffix need to be
activated by removing that suffix.

• Unused configuration template files generated by the debmake command should be removed.

• Copy configuration template files as needed to the filenames matching their pertinent binary package names.

binarypackage.bug-control -x3 installed as usr/share/bug/binarypackage/control in binarypackage. See
“Section 8.11”.

binarypackage.bug-presubj -x3 installed as usr/share/bug/binarypackage/presubj in binarypackage. See
“Section 8.11”.

binarypackage.bug-script -x3 installed as usr/share/bug/binarypackage or usr/share/bug/binarypackage/script
in binarypackage. See “Section 8.11”.

45

https://salsa.debian.org/salsa-ci-team/pipeline

CHAPTER 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

binarypackage.bash-completion -x3 List bash completion scripts to be installed.
The bash-completion package is required for both build and user environments.
See dh_bash-completion(1).

clean -x2 List files that should be removed but are not cleaned by the dh_auto_clean command.
See dh_auto_clean(1) and dh_clean(1).

compat -x4 Set the debhelper compatibility level. (deprecated)
Use “Build-Depends: debhelper-compat (= 13)” in debian/control to specify the compatibility level
and remove debian/compat.
See “COMPATIBILITY LEVELS” in debhelper(7).

binarypackage.conffiles -x3 This optional file is installed into the DEBIAN directory within the binary pack-
age while supplimenting it with all the conffiles auto-detected by debhelper.
This file is primarily useful for using ”special” entries such as the remove-on-upgrade feature from
dpkg(1).
If the program you’re packaging requires every user to modify the configuration files in the /etc direc-
tory, there are two popular ways to arrange for them not to be conffiles, keeping the dpkg command
happy and quiet.

– Create a symlink under the /etc directory pointing to a file under the /var directory generated by
the maintainer scripts.

– Create a file generated by the maintainer scripts under the /etc directory.
See dh_installdeb(1).

binarypackage.config -x3 This is the debconf config script used for asking any questions necessary to con-
figure the package. See “Section 9.22”.

binarypackage.cron.hourly -x3 Installed into the etc/cron/hourly/binarypackage file in binarypackage.
See dh_installcron(1) and cron(8).

binarypackage.cron.daily -x3 Installed into the etc/cron/daily/binarypackage file in binarypackage.
See dh_installcron(1) and cron(8).

binarypackage.cron.weekly -x3 Installed into the etc/cron/weekly/binarypackage file in binarypackage.
See dh_installcron(1) and cron(8).

binarypackage.cron.monthly -x3 Installed into the *etc/cron/monthly/*binarypackage file in binarypack-
age.
See dh_installcron(1) and cron(8).

binarypackage.cron.d -x3 Installed into the etc/cron.d/binarypackage file in binarypackage.
See dh_installcron(1), cron(8), and crontab(5).

binarypackage.default -x3 If this exists, it is installed into etc/default/binarypackage in binarypackage.
See dh_installinit(1).

binarypackage.dirs -x1 List directories to be created in binarypackage.
See dh_installdirs(1).
Usually, this is not needed since all dh_install* commands create required directories automatically.
Use this only when you run into trouble.

binarypackage.doc-base -x1 Installed as the doc-base control file in binarypackage.
See dh_installdocs(1) and “Debian doc-base Manual (doc-base.html)” provided by the doc-base pack-
age.

binarypackage.docs -x1 List documentation files to be installed in binarypackage.
See dh_installdocs(1).

binarypackage.emacsen-compat -x3 Installed into usr/lib/emacsen-common/packages/compat/binarypackage
in binarypackage.
See dh_installemacsen(1).

binarypackage.emacsen-install -x3 Installed into usr/lib/emacsen-common/packages/install/binarypackage
in binarypackage.
See dh_installemacsen(1).

46

file:///usr/share/doc/doc-base/doc-base.html/index.html

CHAPTER 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

binarypackage.emacsen-remove -x3 Installed into usr/lib/emacsen-common/packages/remove/binarypackage
in binarypackage.
See dh_installemacsen(1).

binarypackage.emacsen-startup -x3 Installed into usr/lib/emacsen-common/packages/startup/binarypackage
in binarypackage.
See dh_installemacsen(1).

binarypackage.examples -x1 List example files or directories to be installed into usr/share/doc/binarypackage/examples/
in binarypackage.
See dh_installexamples(1).

gbp.conf -x1 If this exists, it functions as the configuration file for the gbp command.
See gbp.conf(5), gbp(1), and git-buildpackage(1).

binarypackage.info -x1 List info files to be installed in binarypackage.
See dh_installinfo(1).

binarypackage.init -x4 Installed into etc/init.d/binarypackage in binarypackage. (deprecated)
See dh_installinit(1).

binarypackage.install -x1 List files which should be installed but are not installed by the dh_auto_install
command.
See dh_install(1) and dh_auto_install(1).

binarypackage.links -x1 List pairs of source and destination files to be symlinked. Each pair should be put
on its own line, with the source and destination separated by whitespace.
See dh_link(1).

binarypackage.lintian-overrides -x3 Installed into usr/share/lintian/overrides/binarypackage in the pack-
age build directory. This file is used to suppress erroneous lintian diagnostics.
See dh_lintian(1), lintian(1) and “Lintian User’s Manual”.

binarypackage.maintscript -x2 If this optional file exists, debhelper uses this as the template to generate
DEBIAN/binarypackage.{pre,post}{inst,rm} files within the binary package while adding “-- ”$@””
to the dpkg-maintscript-helper(1) command.
See dh_installdeb(1) and “Chapter 6 - Package maintainer scripts and installation procedure” in the
“Debian Policy Manual”.

manpage.* -x3 These are manpage template files generated by the debmake command. Please rename these
to appropriate file names and update their contents.
Debian Policy requires that each program, utility, and function should have an associated manual page
included in the same package. Manual pages are written in nroff(1). If you are new to making a
manpage, use manpage.asciidoc or manpage.1 as the starting point.

binarypackage.manpages -x1 List man pages to be installed.
See dh_installman(1).

binarypackage.menu (deprecated, no more installed) tech-ctte #741573 decided “Debian should use .desk-
top files as appropriate”.
Debian menu file installed into usr/share/menu/binarypackage in binarypackage.
See menufile(5) for its format. See dh_installmenu(1).

NEWS -x3 Installed into usr/share/doc/binarypackage/NEWS.Debian.
See dh_installchangelogs(1).

patches/* Collection of -p1 patch files which are applied to the upstream source before building the source.
No patch files are generated by the debmake command.
See dpkg-source(1), “Section 4.4” and “Section 5.9”.

patches/series -x1 The application sequence of the patches/* patch files.
binarypackage.preinst -x2, binarypackage.postinst -x2, binarypackage.prerm -x2, binarypackage.postrm -x2

If these optional files exist, the corresponding files are installed into the DEBIAN directory within the
binary package after enriched by debhelper. Otherwise, these files in the DEBIAN directory within
the binary package is generated by debhelper.
Whenever possible, simpler binarypackage.maintscript should be used instead.

47

https://lintian.debian.org/manual/index.html
https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
https://bugs.debian.org/741573

CHAPTER 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

See dh_installdeb(1) and “Chapter 6 - Package maintainer scripts and installation procedure” in the
“Debian Policy Manual”.
See also debconf-devel(7) and “3.9.1 Prompting in maintainer scripts” in the “Debian Policy Manual”.

README.Debian -x1 Installed into the first binary package listed in the debian/control file as usr/share/-
doc/binarypackage/README.Debian.
This file provides the information specific to the Debian package.
See dh_installdocs(1).

README.source -x1 Installed into the first binary package listed in the debian/control file as usr/share/-
doc/binarypackage/README.source.
If running “dpkg-source -x” on a source package doesn’t produce the source of the package, ready for
editing, and allow one to make changes and run dpkg-buildpackage to produce a modified package
without taking any additional steps, creating this file is recommended.
See “Debian policy manual section 4.14”.

binarypackage.service -x3 If this exists, it is installed into lib/systemd/system/binarypackage.service in bi-
narypackage.
See dh_systemd_enable(1), dh_systemd_start(1), and dh_installinit(1).

source/format -x1 The Debian package format.
– Use “3.0 (quilt)” to make this non-native package (recommended)
– Use “3.0 (native)” to make this native package

See “SOURCE PACKAGE FORMATS” in dpkg-source(1).
source/lintian-overrides -x3 These file is not installed, but are scanned by the lintian command to provide

overrides for the source package.
See dh_lintian(1) and lintian(1).

source/local-options -x1 The dpkg-source command uses this content as its options. Notable options are:
– unapply-patches
– abort-on-upstream-changes
– auto-commit
– single-debian-patch

This is not included in the generated source package and is meant to be committed to the VCS of the
maintainer.
See “FILE FORMATS” in dpkg-source(1).

source/local-patch-header -x1 Free form text that is put on top of the automatic patch generated.
This is not included in the generated source package and is meant to be committed to the VCS of the
maintainer.
See “FILE FORMATS” in dpkg-source(1).

source/options -x3 Use source/local-options instead to avoid issues with NMUs. See “FILE FORMATS”
in dpkg-source(1).

source/patch-header -x4 Use source/local-patch-header instead to avoid issues with NMUs. See “FILE
FORMATS” in dpkg-source(1).

binarypackage.symbols -x1 The symbols files, if present, are passed to the dpkg-gensymbols command to
be processed and installed.
See dh_makeshlibs(1) and “Section 9.16”..

binarypackage.templates -x3 This is the debconf templates file used for asking any questions necessary to
configure the package. See “Section 9.22”.

tests/control -x1 This is the RFC822-style test meta data file defined in DEP-8. See autopkgtest(1) and
“Section 9.4”.

TODO -x3 Installed into the first binary package listed in the debian/control file as usr/share/doc/binarypackage/TODO.Debian.
See dh_installdocs(1).

binarypackage.tmpfile -x3 If this exists, it is installed into usr/lib/tmpfiles.d/binarypackage.conf in bina-
rypackage.
See dh_systemd_enable(1), dh_systemd_start(1), and dh_installinit(1).

48

https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
https://www.debian.org/doc/debian-policy/ch-binary.html#prompting-in-maintainer-scripts
https://www.debian.org/doc/debian-policy/ch-source.html#source-package-handling-debian-readme-source
https://dep-team.pages.debian.net/deps/dep8/

CHAPTER 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

binarypackage.upstart -x4 If this exists, it is installed into etc/init/package.conf in the package build direc-
tory. (deprecated)
See dh_installinit(1).

upstream/metadata -x1 Per-package machine-readable metadata about upstream (DEP-12). See “Upstream
MEtadata GAthered with YAml (UMEGAYA)”.

49

https://dep-team.pages.debian.net/deps/dep12/
https://wiki.debian.org/UpstreamMetadata
https://wiki.debian.org/UpstreamMetadata

Chapter 7

Sanitization of the source

There are a few cases which require to sanitize the source to prevent contaminating the generated Debian source
package.

• Non DFSG contents in the upstream source.

– Debian takes software freedom seriously and follows the DFSG.

• Extraneous auto-generated contents in the upstream source.

– Debian package should rebuild them under the latest system.

• Extraneous VCS contents in the upstream source.

– The -i and -I options set in “Section 4.5” for the dpkg-source(1) command should avoid these.

* The -i option is aimed at the non-native Debian package.

* The -I is aimed at the native Debian package.

There are several methods to avoid inclusion of undesirable contents.

7.1 Fix with Files-Excluded
This is suitable for avoiding non DFSG contents in the upstream source tarball.

• List the files to be removed in the Files-Excluded stanza of the debian/copyright file.

• List the URL to download the upstream tarball in the debian/watch file.

• Run the uscan command to download the new upstream tarball.

– Alternatively, use the “gbp import-orig --uscan --pristine-tar” command.

• mk-origtargz invoked from uscan removes excluded files from the upstream tarball and repack it as a clean
tarball.

• The resulting tarball has the version number with an additional suffix +dfsg.

See “COPYRIGHT FILE EXAMPLES” in mk-origtargz(1).

7.2 Fix with “debian/rules clean”
This is suitable for avoiding auto-generated files and removes them in the “debian/rules clean” target

Note

The “debian/rules clean” target is called before the “dpkg-source --build” com-
mand by the dpkg-buildpackage command and the “dpkg-source --build” com-
mand ignores removed files.

50

https://www.debian.org/social_contract.html#guidelines
https://www.debian.org/social_contract.html#guidelines
https://www.debian.org/social_contract.html#guidelines

CHAPTER 7. SANITIZATION OF THE SOURCE 7.3. FIX WITH EXTEND-DIFF-IGNORE

7.3 Fix with extend-diff-ignore
This is for the non-native Debian package.

The problem of extraneous diffs can be fixed by ignoring changes made to parts of the source tree by adding
the “extend-diff-ignore=… ” line in the debian/source/options file.

debian/source/options to exclude the config.sub, config.guess and Makefile files:

Don't store changes on autogenerated files
extend-diff-ignore = "(^|/)(config\.sub|config\.guess|Makefile)$"

Note

This approach always works, even when you can’t remove the file. So it saves
you having to make a backup of the unmodified file just to be able to restore it
before the next build.

Tip

If the debian/source/local-options file is used instead, you can hide this setting
from the generated source package. This may be useful when the local non-
standard VCS files interfere with your packaging.

7.4 Fix with tar-ignore
This is for the native Debian package.

You can exclude some files in the source tree from the generated tarball by tweaking the file glob by adding the
“tar-ignore=… ” lines in the debian/source/options or debian/source/local-options files.

Note

If, for example, the source package of a native package needs files with the file
extension .o as a part of the test data, the setting in “Section 4.5” is too ag-
gressive. You can work around this problem by dropping the -I option for DE-
BUILD_DPKG_BUILDPACKAGE_OPTS in “Section 4.5” while adding the “tar-
ignore=… ” lines in the debian/source/local-options file for each package.

7.5 Fix with “git clean -dfx”
The problem of extraneous contents in the second build can be avoided by restoring the source tree by committing
the source tree to the Git repository before the first build.

You can restore the source tree before the second package build. For example:

$ git reset --hard
$ git clean -dfx

This works because the dpkg-source command ignores the contents of the typical VCS files in the source tree
with the DEBUILD_DPKG_BUILDPACKAGE_OPTS setting in ̀”Section 4.5 ̀”.

51

CHAPTER 7. SANITIZATION OF THE SOURCE 7.5. FIX WITH “GIT CLEAN -DFX”

Tip

If the source tree is not managed by a VCS, you should run “git init; git add -A
.; git commit” before the first build.

52

Chapter 8

More on packaging

Let’s describe more basics on Debian packaging.

8.1 Package customization
All customization data for the Debian source package resides in the debian/ directory as presented in “Section 5.7”:

• The Debian package build system can be customized through the debian/rules file (see “Section 8.2”).

• The Debian package installation path etc. can be customized through the addition of configuration files such
as package.install and package.docs in the debian/ directory for the dh_* commands from the debhelper
package (see “Section 6.14”).

When these are not sufficient to make a good Debian package, -p1 patches of debian/patches/* files are de-
ployed to modify the upstream source. These are applied in the sequence defined in the debian/patches/series file
before building the package as presented in “Section 5.9”.

You should address the root cause of the Debian packaging problem by the least invasive way. The generated
package shall be more robust for future upgrades in this way.

Note

Send the patch addressing the root cause to the upstream maintainer if it is useful
to the upstream.

8.2 Customized debian/rules
Flexible customization of the Section 6.5 is realized by adding appropriate override_dh_* targets and their rules.

Whenever some special operation is required for a certain dh_foo command invoked by the dh command, any
automatic execution of it can be overridden by adding the makefile target override_dh_foo in the debian/rules
file.

The build process may be customized via the upstream provided interface such as arguments to the standard
source build system commands, such as:

• configure,

• Makefile,

• “python -m build”, or

• Build.PL.

If this is the case, you should add the override_dh_auto_build target with “dh_auto_build -- arguments”. This
ensures passing arguments to the build system after the default parameters that dh_auto_build usually passes.

53

CHAPTER 8. MORE ON PACKAGING 8.3. VARIABLES FOR DEBIAN/RULES

Tip

Please try not to execute the bare build system commands directly if they are
supported by the dh_auto_build command.

See:

• “Section 5.7” for the basic example.

• “Section 9.3” to be reminded of the challenge involving the underlying build system.

• “Section 9.10” for multiarch customization.

• “Section 9.6” for hardening customization.

8.3 Variables for debian/rules
Some variable definitions useful for customizing debian/rules can be found in files under /usr/share/dpkg/. No-
tably:

pkg-info.mk Set DEB_SOURCE, DEB_VERSION, DEB_VERSION_EPOCH_UPSTREAM, DEB_VERSION_UPSTREAM_REVISION,
DEB_VERSION_UPSTREAM, and DEB_DISTRIBUTION variables obtained from dpkg-parsechangelog(1).
(useful for backport support etc..)

vendor.mk Set DEB_VENDOR and DEB_PARENT_VENDOR variables; and dpkg_vendor_derives_from
macro obtained from dpkg-vendor(1). (useful for vendor support (Debian, Ubuntu, …).)

architecture.mk Set DEB_HOST_* and DEB_BUILD_* variables obtained from dpkg-architecture(1).

buildflags.mk Set CFLAGS, CPPFLAGS, CXXFLAGS, OBJCFLAGS, OBJCXXFLAGS, GCJFLAGS, FFLAGS,
FCFLAGS, and LDFLAGS build flags obtained from dpkg-buildflags(1).

For example, you can add an extra option to CONFIGURE_FLAGS for linux-any target architectures by
adding the followings to debian/rules:
DEB_HOST_ARCH_OS ?= $(shell dpkg-architecture -qDEB_HOST_ARCH_OS)
...
ifeq ($(DEB_HOST_ARCH_OS),linux)
CONFIGURE_FLAGS += --enable-wayland
endif

See “Section 9.10”, dpkg-architecture(1) and dpkg-buildflags(1).

8.4 New upstream release
When a new upstream release tarball foo-newvwesion.tar.gz is released, the Debian source package can be updated
by invoking commands in the old source tree as:
$ uscan
... foo-newversion.tar.gz downloaded
$ uupdate -v newversion ../foo-newversion.tar.gz

• The debian/watch file in the old source tree must be a valid one.

• This make symlink ../foo_newvwesion.orig.tar.gz pointing to ../foo-newvwesion.tar.gz.

• Files are extracted from ../foo-newvwesion.tar.gz to ../foo-newversion/

• Files are copied from ../foo-oldversion/debian/ to ../foo-newvesion/debian/ .

After the above, you should refresh debian/patches/* files (see “Section 8.5”) and update debian/changelog
with the dch(1) command.

When “debian uupdate” is specified at the end of line in the debian/watch file, uscan automatically executes
uupdate(1) after downloading the tarball.

54

CHAPTER 8. MORE ON PACKAGING 8.5. MANAGE PATCH QUEUE WITH DQUILT

8.5 Manage patch queue with dquilt
You can add, drop, and refresh debian/patches/* files with dquilt to manage patch queue.

• Add a new patch debian/patches/bugname.patch recording the upstream source modification on the file
buggy_file as:

$ dquilt push -a
$ dquilt new bugname.patch
$ dquilt add buggy_file
$ vim buggy_file
...

$ dquilt refresh
$ dquilt header -e
$ dquilt pop -a

• Drop (== disable) an existing patch

– Comment out pertinent line in debian/patches/series
– Erase the patch itself (optional)

• Refresh debian/patches/* files to make “dpkg-source -b” work as expected after updating a Debian package
to the new upstream release.

$ uscan; uupdate # updating to the new upstream release
$ while dquilt push; do dquilt refresh ; done
$ dquilt pop -a

– If conflicts are encountered with “dquilt push” in the above, resolve them and run “dquilt refresh”
manually for each of them.

8.6 Build commands
Here is a recap of popular low level package build commands. There are many ways to do the same thing.

• dpkg-buildpackage = core of package building tool

• debuild = dpkg-buildpackage + lintian (build under the sanitized environment variables)

• schroot = core of the Debian chroot environment tool

• sbuild = dpkg-buildpackage on custom schroot (build in the chroot)

8.7 Note on sbuild
The sbuild(1) command is a wrapper script of dpkg-buildpackage which builds Debian binary packages in a
chroot environment managed by the schroot(1) command. For example, building for Debian unstable suite can
be done as:

$ sudo sbuild -d unstable

In schroot(1) terminology, this builds a Debian package in a clean ephemeral chroot “chroot:unstable-amd64-
sbuild” started as a copy of the clean minimal persistent chroot “source:unstable-amd64-sbuild”.

This build environment was set up as described in “Section 4.6” with “sbuild-debian-developer-setup -s un-
stable” which essentially did the following:

$ sudo mkdir -p /srv/chroot/dist-amd64-sbuild
$ sudo sbuild-createchroot unstable /srv/chroot/unstable-amd64-sbuild http://deb ←↩

.debian.org/debian
$ sudo usermod -a -G sbuild <your_user_name>
$ sudo newgrp -

55

https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/Chroot

CHAPTER 8. MORE ON PACKAGING 8.8. SPECIAL BUILD CASES

The schroot(1) configuration for unstable-amd64-sbuild was generated at /etc/schroot/chroot.d/unstable-
amd64-sbuild.$suffix :

[unstable-amd64-sbuild]
description=Debian sid/amd64 autobuilder
groups=root,sbuild
root-groups=root,sbuild
profile=sbuild
type=directory
directory=/srv/chroot/unstable-amd64-sbuild
union-type=overlay

Here:

• The profile defined in the /etc/schroot/sbuild/ directory is used to setup the chroot environment.

• /srv/chroot/unstable-amd64-sbuild directory holds the chroot filesystem.

• /etc/sbuild/unstable-amd64-sbuild is symlinked to /srv/chroot/unstable-amd64-sbuild .

You can update this source chroot “source:unstable-amd64-sbuild” by:

$ sudo sbuild-update -udcar unstable

You can log into this source chroot “source:unstable-amd64-sbuild” by:

$ sudo sbuild-shell unstable

Tip

If your source chroot filesystem is missing packages such as libeatmydata1,
ccache, and lintian for your needs, you may want to install these by logging into
it.

8.8 Special build cases
The orig.tar.gz file may need to be uploaded for a Debian revision other than 0 or 1 under some exceptional cases
(e.g., for a security upload).

When an essential package becomes a non-essential one (e.g., adduser), you need to remove it manually from
the existing chroot environment for its use by piuparts.

8.9 Upload orig.tar.gz
When you first upload the package to the archive, you need to include the original orig.tar.gz source, too.

If the Debian revision number of the package is either 1 or 0, this is the default. Otherwise, you must provide
the dpkg-buildpackage option -sa to the dpkg-buildpackage command.

• dpkg-buildpackage -sa

• debuild -sa

• sbuild

• For “gbp buildpackage”, edit the ~/.gbp.conf file.

56

CHAPTER 8. MORE ON PACKAGING 8.10. SKIPPED UPLOADS

Tip

On the other hand, the -sd option will force the exclusion of the original orig.tar.gz
source.

Tip

Security uploads require including the orig.tar.gz file.

8.10 Skipped uploads
If you created multiple entries in the debian/changelog while skipping uploads, you must create a proper *_.changes
file which includes all changes since the last upload. This can be done by specifying the dpkg-buildpackage option
-v with the last uploaded version, e.g., 1.2.

• dpkg-buildpackage -v1.2

• debuild -v1.2

• sbuild --debbuildopts -v1.2

• For gbp buildpackage, edit the ~/.gbp.conf file.

8.11 Bug reports
The reportbug(1) command used for the bug report of binarypackage can be customized by the files in us-
r/share/bug/binarypackage/.

The dh_bugfiles command installs these files from the template files in the debian/ directory.

• debian/binarypackage.bug-control → usr/share/bug/binarypackage/control

– This file contains some directions such as redirecting the bug report to another package.

• debian/binarypackage.bug-presubj → usr/share/bug/binarypackage/presubj

– This file is displayed to the user by the reportbug command.

• debian/binarypackage.bug-script → usr/share/bug/binarypackage or usr/share/bug/binarypackage/script

– The reportbug command runs this script to generate a template file for the bug report.

See dh_bugfiles(1) and “reportbug’s Features for Developers (README.developers)”

Tip

If you always remind the bug reporter of something or ask them about their situ-
ation, use these files to automate it.

57

file:///usr/share/doc/reportbug/README.developers.gz

Chapter 9

Advanced packaging

Let’s describe advanced topics on Debian packaging.

9.1 Historical perspective
Let me oversimplify historical perspective of Debian packaging practices focused on the non-native packaging.

Debian was started in 1990s when upstream packages were available from public FTP sites such as Sunsite. In
those early days, Debian packaging used Debian source format currently known as the Debian source format “1.0”:

• The Debian source package ships a set of files for the Debian source package.

– package_version.orig.tar.gz : symlink to or copy of the upstream released file.
– package_version-revision.diff.gz : “One big patch” for Debian modifications.
– package_version-revision.dsc : package description.

• Several workaround approaches such as dpatch, dbs, or cdbs were deplyoed to manage multiple topic
patches.

The modern Debian source format “3.0 (quilt)” was invented around 2008 (see “ProjectsDebSrc3.0”):

• The Debian source package ships a set of files for the Debian source package.

– package_version.orig.tar.?z : symlink to or copy of the upstream released file.
– package_version-revision.debian.tar.?z : tarball of debian/ for Debian modifications.

* The debian/source/format file contains “3.0 (quilt)”.

* Optional multiple topic patches are stored in the debian/patches/ directory.
– package_version-revision.dsc : package description.

• The standarized approach to manage multiple topic patches using quilt(1) is deployed for the Debian source
format “3.0 (quilt)”.

Most Debian packages adopted the Debian source formats “3.0 (quilt)” and “3.0 (native)”.
Now, the git(1) is popular with upstream and Debian developers. The git and its associated tools are important

part of the modern Debian packaging workflow. This modern workflow involving git will be mentioned later in
“Chapter 10”.

9.2 Current trends
Current Debian packaging practices and their trends are moving target. See:

• “Debian Trends” — Hints for “De facto standard” of Debian practices

– Build systems: dh
– Debian source format: “3.0 (quilt)”
– VCS: git

58

https://www.debian.org/doc/manuals/project-history/index.en.html
https://en.wikipedia.org/wiki/Sunsite
https://wiki.debian.org/Projects/DebSrc3.0
https://trends.debian.net/

CHAPTER 9. ADVANCED PACKAGING 9.3. NOTE ON BUILD SYSTEM

– VCS Hosting: salsa
– Rules-Requires-Root: adopted, fakeroot
– Copyright format: DEP-5

• “debhelper-compat-upgrade-checklist(7) manpage” — Upgrade checklist for debhelper

• “DEP - Debian Enhancement Proposals” — Formal proposals to enhance Debian

You can also search entire Debian source code data by yourself, too.

• “Debian Sources” — code search tool

– “Debian Code Search” — wiki page describing its usage

• “Debian Code Search” — another code search tool

9.3 Note on build system
Auto-generated files of the build system may be found in the released upstream tarball. These should be regenerated
when Debian package is build. E.g.:

• “dh $@ --with autoreconf” should be used in the debian/rules if Autotools (autoconf + automake) are
used.

Some modern build system may be able to download required source codes and binary files from arbitrary
remote hosts to satisfy build requirements. Don’t use this download feature. The official Debian package is required
to be build only with packages listed in Build-Depends: of the debian/control file.

9.4 Continuous integration
The dh_auto_test(1) command is a debhelper command that tries to automatically run the test suite provided by
the upstream developer during the Debian package building process.

The autopkgtest(1) command can be used after the Debian package building process. It tests generated Debian
binary packages in the virtual environment using the debian/tests/control RFC822-style metadata file as continu-
ous integration (CI). See:

• Documents in the /usr/share/doc/autopkgtest/ directory

• “4. autopkgtest: Automatic testing for packages” of the “Ubuntu Packaging Guide”

There are several other CI tools on Debian for you to explore.

• The Salsa offers “Section 10.3”.

• The debci package: CI platform on top of the autopkgtest package

• The jenkins package: generic CI platform

9.5 Bootstrapping
Debian cares about supporting new ports or flavours. The new ports or flavours require bootstrapping operation
for the cross-build of the initial minimal native-building system. In order to avoid build-dependency loops dur-
ing bootstrapping, the build-dependency needs to be reduced using the DEB_BUILD_PROFILES environment
variable.

See Debian wiki: “BuildProfileSpec”.

Tip

If a core package foo build depends on a package bar with deep build depen-
dency chains but bar is only used in the test target in foo, you can safely mark
the bar with <!nocheck> in the Build-depends of foo to avoid build loops.

59

https://salsa.debian.org/
https://dep-team.pages.debian.net/deps/dep5/
https://dep-team.pages.debian.net/
https://sources.debian.org/
https://wiki.debian.org/DebianCodeSearch
https://dcs.zekjur.net/
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_integration
https://packaging.ubuntu.com/html/auto-pkg-test.html
https://salsa.debian.org
https://wiki.debian.org/DebianBootstrap
https://wiki.debian.org/BuildProfileSpec

CHAPTER 9. ADVANCED PACKAGING 9.6. COMPILER HARDENING

9.6 Compiler hardening
The compiler hardening support spreading for Debian jessie (8.0) demands that we pay extra attention to the pack-
aging.

You should read the following references in detail.

• Debian wiki: “Hardening”

• Debian wiki: “Hardening Walkthrough”

The debmake command adds template comments to the debian/rules file as needed for DEB_BUILD_MAINT_OPTIONS,
DEB_CFLAGS_MAINT_APPEND, and DEB_LDFLAGS_MAINT_APPEND (see “Chapter 5” and dpkg-buildflags(1)).

9.7 Reproducible build
Here are some recommendations to attain a reproducible build result.

• Don’t embed the timestamp based on the system time.

• Don’t embed the file path of the build environment.

• Use “dh $@” in the debian/rules to access the latest debhelper features.

• Export the build environment as “LC_ALL=C.UTF-8” (see “Section 11.1”).

• Set the timestamp used in the upstream source from the value of the debhelper-provided environment variable
$SOURCE_DATE_EPOCH.

• Read more at “ReproducibleBuilds”.

– “ReproducibleBuilds Howto”.
– “ReproducibleBuilds TimestampsProposal”.

The control file source-name_source-version_arch.buildinfo generated by dpkg-genbuildinfo(1) records the
build environment. See deb-buildinfo(5)

9.8 Substvar
The debian/control file also defines the package dependency in which the “variable substitutions mechanism”
(substvar) may be used to free package maintainers from chores of tracking most of the simple package dependency
cases. See deb-substvars(5).

The debmake command supports the following substvars:

• ${misc:Depends} for all binary packages

• ${misc:Pre-Depends} for all multiarch packages

• ${shlibs:Depends} for all binary executable and library packages

• ${python:Depends} for all Python packages

• ${python3:Depends} for all Python3 packages

• ${perl:Depends} for all Perl packages

• ${ruby:Depends} for all Ruby packages

For the shared library, required libraries found simply by “objdump -p /path/to/program | grep NEEDED” are
covered by the shlib substvar.

For Python and other interpreters, required modules found simply looking for lines with “import”, “use”,
“require”, etc., are covered by the corresponding substvars.

For other programs which do not deploy their own substvars, the misc substvar covers their dependency.
For POSIX shell programs, there is no easy way to identify the dependency and no substvar covers their de-

pendency.
For libraries and modules required via the dynamic loading mechanism including the “GObject introspection”

mechanism, there is no easy way to identify the dependency and no substvar covers their dependency.

60

https://wiki.debian.org/Hardening
https://wiki.debian.org/HardeningWalkthrough
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds/Howto
https://wiki.debian.org/ReproducibleBuilds/TimestampsProposal
https://www.debian.org/doc/debian-policy/ch-source.html#s-substvars
https://wiki.gnome.org/Projects/GObjectIntrospection

CHAPTER 9. ADVANCED PACKAGING 9.9. LIBRARY PACKAGE

9.9 Library package
Packaging library software requires you to perform much more work than usual. Here are some reminders for
packaging library software:

• The library binary package must be named as in “Section 9.17”.

• Debian ships shared libraries such as /usr/lib/<triplet>/libfoo-0.1.so.1.0.0 (see “Section 9.10”).

• Debian encourages using versioned symbols in the shared library (see “Section 9.16”).

• Debian doesn’t ship *.la libtool library archive files.

• Debian discourages using and shipping *.a static library files.

Before packaging shared library software, see:

• “Chapter 8 - Shared libraries” of the “Debian Policy Manual”

• “10.2 Libraries” of the “Debian Policy Manual”

• “6.7.2. Libraries” of the “Debian Developer’s Reference”

For the historic background study, see:

• “Escaping the Dependency Hell” 1

– This encourages having versioned symbols in the shared library.

• “Debian Library Packaging guide” 2

– Please read the discussion thread following its announcement, too.

9.10 Multiarch
Multiarch support for cross-architecture installation of binary packages (particularly i386 and amd64, but also other
combinations) in the dpkg and apt packages introduced in Debian wheezy (7.0, May 2013), demands that we pay
extra attention to packaging.

You should read the following references in detail.

• Ubuntu wiki (upstream)

– “MultiarchSpec”

• Debian wiki (Debian situation)

– “Debian multiarch support”
– “Multiarch/Implementation”

The multiarch is enabled by using the <triplet> value such as i386-linux-gnu and x86_64-linux-gnu in the
install path of shared libraries as /usr/lib/<triplet>/, etc..

• The <triplet> value required internally by debhelper scripts is implicitly set in themselves. The maintainer
doesn’t need to worry.

• The <triplet> value used in override_dh_* target scripts must be explicitly set in the debian/rules file by the
maintainer. The <triplet> value is stored in the $(DEB_HOST_MULTIARCH) variable in the following
debian/rules snippet example:

DEB_HOST_MULTIARCH = $(shell dpkg-architecture -qDEB_HOST_MULTIARCH)
...
override_dh_install:
mkdir -p package1/lib/$(DEB_HOST_MULTIARCH)
cp -dR tmp/lib/. package1/lib/$(DEB_HOST_MULTIARCH)

1This document was written before the introduction of the symbols file.
2The strong preference is to use the SONAME versioned -dev package names over the single -dev package name in “Chapter 6. Develop-

ment (-DEV) packages”, which does not seem to be shared by the former ftp-master (Steve Langasek). This document was written before the
introduction of the multiarch system and the symbols file.

61

https://www.debian.org/doc/debian-policy/ch-sharedlibs.html
https://www.debian.org/doc/debian-policy/ch-files.html#libraries
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-libraries
https://debconf4.debconf.org/talks/dependency-hell/img1.html
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
https://lists.debian.org/debian-devel/2004/06/msg00069.html
https://wiki.ubuntu.com/MultiarchSpec
https://wiki.debian.org/Multiarch
https://wiki.debian.org/Multiarch/Implementation
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#devpkg
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#devpkg

CHAPTER 9. ADVANCED PACKAGING 9.11. SPLIT OF A DEBIAN BINARY PACKAGE

See:

• “Section 8.3”

• “Section 15.2”

• “Section 9.12”

• “dpkg-architecture(1) manpage”

9.11 Split of a Debian binary package
For well behaving build systems, the split of a Debian binary package into small ones can be realized as follows.

• Create binary package entries for all binary packages in the debian/control file.

• List all file paths (relative to debian/tmp) in the corresponding debian/binarypackage.install files.

Please check examples in this guide:

• “Section 13.11” (Autotools based)

• “Section 13.12” (CMake based)

An intuitive and flexible method to create the initial template debian/control file defining the split of the Debian
binary packages is accommodated with the -b option. See “Section 15.2”.

9.12 Package split scenario and examples
Here are some typical multiarch package split scenarios for the following upstream source examples using the
debmake command:

• a library source libfoo-1.0.tar.gz

• a tool source bar-1.0.tar.gz written in a compiled language

• a tool source baz-1.0.tar.gz written in an interpreted language

binarypackage type Architecture: Multi-
Arch:

Package content

libfoo1 lib* any same the shared library, co-installable
libfoo-dev dev* any same the shared library header files etc.,

co-installable
libfoo-tools bin* any foreign the run-time support programs, not

co-installable
libfoo-doc doc* all foreign the shared library documentation files
bar bin* any foreign the compiled program files, not

co-installable
bar-doc doc* all foreign the documentation files for the program
baz script all foreign the interpreted program files

9.13 Multiarch library path
Debian policy requires to comply with the “Filesystem Hierarchy Standard (FHS), version 3.0”, with the exceptions
noted in “File System Structure”.

The most notable exception is the use of /usr/lib/<triplet>/ instead of /usr/lib<qual>/ (e.g., /lib32/ and /lib64/)
to support a multiarch library.

For Autotools based packages under the debhelper package (compat>=9), this path setting is automatically
taken care by the dh_auto_configure command.

For other packages with non-supported build systems, you need to manually adjust the install path as follows.

62

https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://www.debian.org/doc/debian-policy/ch-opersys.html#file-system-structure

CHAPTER 9. ADVANCED PACKAGING 9.14. MULTIARCH HEADER FILE PATH

Table 9.2 The multiarch library path options
Classic path i386 multiarch path amd64 multiarch path
/lib/ /lib/i386-linux-gnu/ /lib/x86_64-linux-gnu/
/usr/lib/ /usr/lib/i386-linux-gnu/ /usr/lib/x86_64-linux-gnu/

• If “./configure” is used in the override_dh_auto_configure target in debian/rules, make sure to replace it
with “dh_auto_configure --” while re-targeting the install path from /usr/lib/ to /usr/lib/$(DEB_HOST_MULTIARCH)/.

• Replace all occurrences of /usr/lib/ with /usr/lib/*/ in debian/foo.install files.

All files installed simultaneously as the multiarch package to the same file path should have exactly the same file
content. You must be careful with differences generated by the data byte order and by the compression algorithm.

The shared library files in the default path /usr/lib/ and /usr/lib/<triplet>/ are loaded automatically.
For shared library files in another path, the GCC option -l must be set by the pkg-config command to make

them load properly.

9.14 Multiarch header file path
GCC includes both /usr/include/ and /usr/include/<triplet>/ by default on the multiarch Debian system.

If the header file is not in those paths, the GCC option -I must be set by the pkg-config command to make
”#include <foo.h>” work properly.

Table 9.3 The multiarch header file path options
Classic path i386 multiarch path amd64 multiarch path
/usr/include/ /usr/include/i386-linux-gnu/ /usr/include/x86_64-linux-gnu/
/usr/include/packagename/ /usr/include/i386-linux-

gnu/packagename/
/usr/include/x86_64-linux-
gnu/packagename/

/usr/lib/i386-linux-
gnu/packagename/

/usr/lib/x86_64-linux-
gnu/packagename/

The use of the /usr/lib/<triplet>/packagename/ path for the library files allows the upstream maintainer to use
the same install script for the multiatch system with /usr/lib/<triplet> and the biarch system with /usr/lib<qual>/.
3

The use of the file path containing packagename enables having more than 2 development libraries simultane-
ously installed on a system.

9.15 Multiarch *.pc file path
The pkg-config program is used to retrieve information about installed libraries in the system. It stores its config-
uration parameters in the *.pc file and is used for setting the -I and -l options for GCC.

Table 9.4 The *.pc file path options
Classic path i386 multiarch path amd64 multiarch path
/usr/lib/pkgconfig/ /usr/lib/i386-linux-gnu/pkgconfig/ /usr/lib/x86_64-linux-

gnu/pkgconfig/

9.16 Library symbols
The symbols support in dpkg introduced in Debian lenny (5.0, May 2009) helps us to manage the backward ABI
compatibility of the library package with the same package name. The DEBIAN/symbols file in the binary package
provides the minimal version associated with each symbol.

3This path is compliant with the FHS. “Filesystem Hierarchy Standard: /usr/lib : Libraries for programming and packages” states “Appli-
cations may use a single subdirectory under /usr/lib. If an application uses a subdirectory, all architecture-dependent data exclusively used by
the application must be placed within that subdirectory.”

63

https://www.debian.org/doc/packaging-manuals/fhs/fhs-2.3.html#USRLIBLIBRARIESFORPROGRAMMINGANDPA

CHAPTER 9. ADVANCED PACKAGING 9.16. LIBRARY SYMBOLS

An oversimplified method for the library packaging is as follows.

• Extract the old DEBIAN/symbols file of the immediate previous binary package with the “dpkg-deb -e”
command.

– Alternatively, the mc command may be used to extract the DEBIAN/symbols file.

• Copy it to the debian/binarypackage.symbols file.

– If this is the first package, use an empty content file instead.

• Build the binary package.

– If the dpkg-gensymbols command warns about some new symbols:

* Extract the updated DEBIAN/symbols file with the “dpkg-deb -e” command.

* Trim the Debian revision such as -1 in it.

* Copy it to the debian/binarypackage.symbols file.

* Re-build the binary package.
– If the dpkg-gensymbols command does not warn about new symbols:

* You are done with the library packaging.

For the details, you should read the following primary references.

• “8.6.3 The symbols system” of the “Debian Policy Manual”

• “dh_makeshlibs(1) manapage”

• “dpkg-gensymbols(1) manapage”

• “dpkg-shlibdeps(1) manapage”

• “deb-symbols(5) manapage”

You should also check:

• Debian wiki: “UsingSymbolsFiles”

• Debian wiki: “Projects/ImprovedDpkgShlibdeps”

• Debian kde team: “Working with symbols files”

• “Section 13.11”

• “Section 13.12”

Tip

For C++ libraries and other cases where the tracking of symbols is problematic,
follow “8.6.4 The shlibs system” of the “Debian Policy Manual”, instead. Please
make sure to erase the empty debian/binarypackage.symbols file generated by
the debmake command. For this case, the DEBIAN/shlibs file is used.

64

https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-symbols-system
https://wiki.debian.org/UsingSymbolsFiles
https://wiki.debian.org/Projects/ImprovedDpkgShlibdeps
https://qt-kde-team.pages.debian.net/symbolfiles.html
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-shlibs-system

CHAPTER 9. ADVANCED PACKAGING 9.17. LIBRARY PACKAGE NAME

9.17 Library package name
Let’s consider that the upstream source tarball of the libfoo library is updated from libfoo-7.0.tar.gz to libfoo-
8.0.tar.gz with a new SONAME major version which affects other packages.

The binary library package must be renamed from libfoo7 to libfoo8 to keep the unstable suite system working
for all dependent packages after the upload of the package based on the libfoo-8.0.tar.gz.

Warning

If the binary library package isn’t renamed, many dependent packages in the
unstable suite become broken just after the library upload even if a binNMU
upload is requested. The binNMU may not happen immediately after the upload
due to several reasons.

The -dev package must follow one of the following naming rules:

• Use the unversioned -dev package name: libfoo-dev

– This is the typical one for leaf library packages.
– Only one version of the library source package is allowed in the archive.

* The associated library package needs to be renamed from libfoo7 to libfoo8 to prevent dependency
breakage in the unstable suite during the library transition.

– This approach should be used if the simple binNMU resolves the library dependency quickly for all
affected packages. (ABI change by dropping the deprecated API while keeping the active API un-
changed.)

– This approach may still be a good idea if manual code updates, etc. can be coordinated and manageable
within limited packages. (API change)

• Use the versioned -dev package names: libfoo7-dev and libfoo8-dev

– This is typical for many major library packages.
– Two versions of the library source packages are allowed simultaneously in the archive.

* Make all dependent packages depend on libfoo-dev.

* Make both libfoo7-dev and libfoo8-dev provide libfoo-dev.

* The source package needs to be renamed as libfoo7-7.0.tar.gz and libfoo8-8.0.tar.gz respectively
from libfoo-?.0.tar.gz.

* The package specific install file path including libfoo7 and libfoo8 respectively for header files
etc. needs to be chosen to make them co-installable.

– Do not use this heavy handed approach, if possible.
– This approach should be used if the update of multiple dependent packages require manual code updates,

etc. (API change) Otherwise, the affected packages become RC buggy with FTBFS.

Tip

If the data encoding scheme changes (e.g., latin1 to utf-8), the same care as the
API change needs to be taken.

See “Section 9.9”.

65

https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface

CHAPTER 9. ADVANCED PACKAGING 9.18. LIBRARY TRANSITION

9.18 Library transition
When you package a new library package version which affects other packages, you must file a transition bug
report against the release.debian.org pseudo package using the reportbug command with the ben file and wait for
the approval for its upload from the Release Team.

Release team has the “transition tracker”. See “Transitions”.

Caution

Please make sure to rename binary packages as in “Section 9.17”.

9.19 binNMU safe
A “binNMU” is a binary-only non-maintainer upload performed for library transitions etc. In a binNMU upload,
only the “Architecture: any” packages are rebuilt with a suffixed version number (e.g. version 2.3.4-3 will become
2.3.4-3+b1). The “Architecture: all” packages are not built.

The dependency defined in the debian/control file among binary packages from the same source package
should be safe for the binNMU. This needs attention if there are both “Architecture: any” and “Architecture:
all” packages involved in it.

• “Architecture: any” package: depends on “Architecture: any” foo package

– Depends: foo (= ${binary:Version})

• “Architecture: any” package: depends on “Architecture: all” bar package

– Depends: bar (= ${source:Version})

• “Architecture: all” package: depends on “Architecture: any” baz package

– Depends: baz (>= ${source:Version}), baz (<< ${source:Version}.0~)

9.20 Debugging information
The Debian package is built with the debugging information but packaged into the binary package after stripping
the debugging information as required by “Chapter 10 - Files” of the “Debian Policy Manual”.

See

• “6.7.9. Best practices for debug packages” of the “Debian Developer’s Reference”.

• “18.2 Debugging Information in Separate Files” of the “Debugging with gdb”

• “dh_strip(1) manapage”

• “strip(1) manapage”

• “readelf(1) manapage”

• “objcopy(1) manapage”

• Debian wiki: “DebugPackage”

• Debian wiki: “AutomaticDebugPackages”

• Debian debian-devel post: “Status on automatic debug packages” (2015-08-15)

66

https://ben.debian.net/#_query_language
https://wiki.debian.org/Teams/ReleaseTeam
https://release.debian.org/transitions/
https://wiki.debian.org/Teams/ReleaseTeam/Transitions
https://wiki.debian.org/binNMU
https://www.debian.org/doc/debian-policy/ch-files.html
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-dbg
https://sourceware.org/gdb/current/onlinedocs/gdb/Separate-Debug-Files.html#Separate-Debug-Files
https://wiki.debian.org/DebugPackage
https://wiki.debian.org/AutomaticDebugPackages
https://lists.debian.org/debian-devel/2015/08/msg00443.html

CHAPTER 9. ADVANCED PACKAGING 9.21. -DBGSYM PACKAGE

9.21 -dbgsym package
The debugging information is automatically packaged separately as the debug package using the dh_strip command
with its default behavior. The name of such a debug package normally has the -dbgsym suffix.

• The debian/rules file shouldn’t explicitly contain dh_strip.

• Set the Build-Depends to debhelper-compat (>=13) while removing Build-Depends to debhelper in de-
bian/control.

9.22 debconf
The debconf package enables us to configure packages during their installation in 2 main ways:

• non-interactively from the debian-installer pre-seeding.

• interactively from the menu interface (dialog, gnome, kde, …)

– the package installation: invoked by the dpkg command
– the installed package: invoked by the dpkg-reconfigure command

All user interactions for the package installation must be handled by this debconf system using the following
files.

• debian/binarypackage.config

– This is the debconf config script used for asking any questions necessary to configure the package.

• debian/binarypackage.template

– This is the debconf templates file used for asking any questions necessary to configure the package.

These debconf files are called by package configuration scripts in the binary Debian package

• DEBIAN/binarypackage.preinst

• DEBIAN/binarypackage.prerm

• DEBIAN/binarypackage.postinst

• DEBIAN/binarypackage.postrm

See dh_installdebconf(1), debconf(7), debconf-devel(7) and “3.9.1 Prompting in maintainer scripts” in the
“Debian Policy Manual”.

67

https://www.debian.org/doc/debian-policy/ch-binary.html#prompting-in-maintainer-scripts

Chapter 10

Packaging with git

Up to “Chapter 9”, we focused on packaging operations without using Git or any other VCS. These traditional
packaging operations were based on the tarball released by the upstream as mentioned in “Section 9.1”.

Currently, the git(1) command is the de-facto platform for the VCS tool and is the essential part of both upstream
development and Debian packaging activities. (See Debian wiki “Debian git packaging maintainer branch formats
and workflows” for existing VCS workflows.)

Note

Since the non-native Debian source package uses “diff -u” as its backend tech-
nology for the maintainer modification, it can’t represent modification involving
symlink, file permissions, nor binary data (March 2022 discussion on debian-
devel@l.d.o). Please avoid making such maintainer modifications even though
these can be recorded in the Git repository.

Since VCS workflows are complicated topic and there are many practice styles, I only touch on some key points
with minimal information, here.

Salsa is the remote Git repository service with associated tools. It offers the collaboration platform for Debian
packaging activities using a custom GitLab application instance. See:

• “Section 10.1”

• “Section 10.2”

• “Section 10.3”

There are 2 styles of branch names for the Git repository used for the packaging. See “Section 10.4”.
There are 2 main usage styles for the Git repository for the packaging. See:

• “Section 10.5”

• “Section 10.6”

There are 2 notable Debian packaging tools for the Git repository for the packaging.

• gbp(1) and its subcommands:

– This is a tool designed to work with “Section 10.5”.
– See “Section 10.7”.

• dgit(1) and its subcommands:

– This is a tool designed to work with both “Section 10.6” and “Section 10.5”.
– This contains a tool to upload Debian packages using the dgit server.
– See “Section 10.8”.

68

https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Version_control
https://wiki.debian.org/GitPackagingSurvey
https://wiki.debian.org/GitPackagingSurvey
https://lists.debian.org/debian-devel/2022/03/msg00124.html
https://lists.debian.org/debian-devel/2022/03/msg00124.html
https://salsa.debian.org
https://en.wikipedia.org/wiki/GitLab

CHAPTER 10. PACKAGING WITH GIT 10.1. SALSA REPOSITORY

10.1 Salsa repository
It is highly desirable to host Debian source code package on Salsa. Over 90% of all Debian source code packages
are hosted on Salsa. 1

The exact VCS repository hosting an existing Debian source code package can be identified by a metadata field
Vcs-* which can be viewed with the apt-cache showsrc <package-name> command.

10.2 Salsa account setup
After signing up for an account on Salsa, make sure that the following pages have the same e-mail address and
GPG keys you have configured to be used with Debian, as well as your SSH key:

• https://salsa.debian.org/-/profile/emails

• https://salsa.debian.org/-/user_settings/gpg_keys

• https://salsa.debian.org/-/user_settings/ssh_keys

10.3 Salsa CI service
Salsa runs Salsa CI service as an instance of GitLab CI for “Section 9.4”.

For every “git push” instances, tests which mimic tests run on the official Debian package service can be run
by setting Salsa CI configuration file “Section 6.13” as:

include:
- https://salsa.debian.org/salsa-ci-team/pipeline/raw/master/recipes/debian.yml

Customizations here

10.4 Branch names
The Git repository for the Debian packaging should have at least 2 branches:

• debian-branch to hold the current development work.

– old style: master (or debian, main, latest, …)
– DEP-14 style: debian/sid

• upstream-branch to hold the upstream releases.

– old style: upstream
– DEP-14 style: upstream/latest

In this tutorial, old style branch names are used in examples for simplicity.

Note

This upstream-branch may need to be created using the tarball released by the
upstream independent of the upstream Git repository since it tends to contain
automatically generated files.

The upstream Git repository content can co-exit in the local Git repository used for the Debian packaging by
adding its copy. E.g.:

$ git remote add upstream-git <url-upstream-git-repo>
$ git fetch upstream-git master:upstream-master

This allows easy cherry-picking from the upstream Git repository for bug fixes.

1Use of git.debian.org or alioth.debian.org are deprecated now.

69

https://salsa.debian.org
https://salsa.debian.org
https://salsa.debian.org
https://salsa.debian.org/-/profile/emails
https://salsa.debian.org/-/user_settings/gpg_keys
https://salsa.debian.org/-/user_settings/ssh_keys
https://salsa.debian.org
https://salsa.debian.org/salsa-ci-team/pipeline
https://docs.gitlab.com/ee/ci/
https://salsa.debian.org/salsa-ci-team/pipeline
https://dep-team.pages.debian.net/deps/dep14/
https://dep-team.pages.debian.net/deps/dep14/

CHAPTER 10. PACKAGING WITH GIT 10.5. PATCH UNAPPLIED GIT REPOSITORY

10.5 Patch unapplied Git repository
The patch unapplied Git repository can be summarized as:

• This seems to be the traditional practice as of 2024.

• The source tree matches extracted contents by “dpkg-source -x --skip-patches” of the Debian source pack-
age.

– The upstream source is recorded in the Git repository without changes.
– The maintainer modified contents are confined within the debian/* directory.
– Maintainer changes to the upstream source are recorded in debian/patches/* files for the Debian source

format “3.0 (quilt)”.

• This repository style is useful for all variants of traditional workflows and gdb based workflow:

– “Section 5.7” (no patch)
– “Section 5.10”

* debian/patches/* files can also be generated using “git format-patch”, “git diff”, or “gitk” from
git commits in the through-away maintainer modification branch or from the upstream unreleased
commits.

– “Section 5.11” including the last “dquilt pop -a” step
– “Section 10.9”

• Use helper scripts such as dquilt(1) and gbp-pq(1) to manage data in debian/patches/* files.

– Add .pc line to the ~/.gitignore file if dquilt is used.
– Add unapply-patches and abort-on-upstream-changes lines in the debian/source/local-options file.

• Use “dpkg-source -b” to build the Debian source package.

• Use dput(1) to upload the Debian source package.

– Use “dgit --gbp push-source” or “dgit --gbp push” instead to upload the Debian package via the dgit
server (see “dgit-maint-gbp(7)”).

Note

The debian/source/local-options and debian/source/local-patch-header files
are meant to be recorded by the git command. These aren’t included in the
Debian source package.

10.6 Patch applied Git repository
The patch applied Git repository can be summarized as:

• The source tree matches extracted contents by “dpkg-source -x” of the Debian source package.

– The source tree is buildable and the same as what NMU maintainers see.
– The source is recorded in the Git repository with maintainer changes including the debian/ directory.
– Maintainer changes to the upstream source are also recorded in debian/patches/* files for the Debian

source format “3.0 (quilt)”.

Use one of workflow styles:

• dgit-maint-merge(7) workflow.

70

CHAPTER 10. PACKAGING WITH GIT 10.7. NOTE ON GBP

– Use this if you don’t intend to record topic patches in the Debain source package.
– Good enough for packages only with trivial modifications to the upstream.
– Only choice for packages with intertwined modification histories to the upstream
– Add auto-commit and single-debian-patch lines in the debian/source/local-options file
– Use “git checkout upstream; git pull” to pull the new upstream commit and use “git checkout master

; git merge <new-version-tag>” to merge it to the master branch.
– Use “dpkg-source -b” to build the Debian source package.
– Use “dgit push-source” or “dgit push” for uploading the Debian package via the dgit server.
– See “Section 5.12” for example.

• dgit-maint-debrebase(7) workflow.

– Use this if you wish to commit maintainer changes to the patch applied Git repository with the same
granularity as patches of “Section 10.9”.

– Good for packages with multiple sequenced modifications to the upstream.
– Use “dgit build-source” to build the Debian source package.
– Use “dgit push-source” or “dgit push” for uploading the Debian package via the dgit server.
– Details of this workflow are beyond the scope of this tutorial document. See “Section 10.12” for more.

10.7 Note on gbp
The gbp command is provided by the git-buildpackage package.

• This command is designed to manage contents of “Section 10.5” efficiently.

• Use “gbp import-orig” to import the new upstream tar to the git repository.

– The “--pristine-tar” option for the “git import-orig” command enables storing the upstream tarball in
the same git repository.

– The “--uscan” option as the last argument of the “gbp import-orig” command enables downloading
and committing the new upstream tarball into the git repository.

• Use “gbp import-dsc” to import the previous Debian source package to the git repository.

• Use “gbp dch” to generate the Debian changelog from the git commit messages.

• Use “gbp buildpackage” to build the Debian binary package from the git repository.

– The sbuild package can be used as its clean chroot build backend either by configuration or adding
“--git-builder=’sbuild -A -s --source-only-changes -v -d unstable’”

• Use “gbp pull” to update the debian, upstream and pristine-tar branches safely from the remote repository.

• Use “gbp pq” to manage quilt patches without using dquilt command.

• Use “gbp clone REPOSITORY_URL” to clone and set up tracking branches for debian, upstream and
pristine-tar.

Package history management with the git-buildpackage package is becoming the standard practice for many
Debian maintainers. See more at:

• “Building Debian Packages with git-buildpackage”

• “4 tips to maintain a “3.0 (quilt)” Debian source package in a VCS”

• The systemd packaging practice documentation on “Building from source”

• The workflow mentioned in dgit-maint-gbp(7) which enables to use this gbp with dgit

71

https://honk.sigxcpu.org/projects/git-buildpackage/manual-html/gbp.html
https://raphaelhertzog.com/2010/11/18/4-tips-to-maintain-a-3-0-quilt-debian-source-package-in-a-vcs/
https://salsa.debian.org/systemd-team/systemd/-/blob/debian/master/debian/README.source

CHAPTER 10. PACKAGING WITH GIT 10.8. NOTE ON DGIT

10.8 Note on dgit
The dgit command is provided by the dgit package.

• This command is designed to manage contents of “Section 10.6” efficiently.

– This enables to access the Debian package repository as if it is a git remote repository.

• This command supports uploading Debian packages using the dgit server from both “Section 10.5” and
“Section 10.6”.

The new dgit package offers commands to automate packaging activities using the git repository as an alterna-
tive to still popular gbp-buildpackage. Please read their guide:

• dgit-maint-merge(7) — for the Debian source format “3.0 (quilt)” package with its changes flowing both
ways between the upstream Git repository and the Debian Git repository which are tightly coupled using
“Section 10.6”.

• dgit-maint-debrebase(7) — for the Debian source format “3.0 (quilt)” package with its changes flowing
mostly one way from the upstream Git repository to the Debian Git repository using “Section 10.6”.

• dgit-maint-gbp(7) — for the Debian source format “3.0 (quilt)” package with its Debian Git repository
which is kept usable also for people using gbp-buildpackage(1) using “Section 10.5”.

• dgit-maint-native(7) — for the Debian source format “3.0 (native)” package in the Debian Git repository.
(No maintainer changes)

The dgit(1) command can push the easy-to-trace change history to the https://browse.dgit.debian.org/ site and
can upload Debian package to the Debian repository properly without using dput(1).

The concept around dgit is beyond this tutorial document. Please start reading relevant information:

• “dgit: use the Debian archive as a git remote (2015)”

• “tag2upload (2023)”

10.9 Patch by “gbp-pq” approach
For “Section 10.5”, you can generate debian/patches/* files using the gbp-pq(1) command from git commits in
the through-away patch-queue branch.

Unlike dquilt which offers similar functionality as seen “Section 5.11” and “Section 8.5”, gbp-pq doesn’t gen-
erate .pc/* files.

10.10 Manage patch queue with gbp-pq
You can add, drop, and refresh debian/patches/* files with gbp-pq to manage patch queue.

If the package is managed in “Section 10.5” using the git-buildpackage package, you can revise the upstream
source to fix bug as the maintainer and release a new Debian revision using gbp pq.

• Add a new patch recording the upstream source modification on the file buggy_file as:

$ git checkout master
$ gbp pq import
gbp:info: ... imported on 'patch-queue/master
$ vim buggy_file
...
$ git add buggy_file
$ git commit
$ gbp pq export
gbp:info: On 'patch-queue/master', switching to 'master'
gbp:info: Generating patches from git (master..patch-queue/master)
$ git add debian/patches/*
$ dch -i
$ git commit -a -m "Closes: #<bug_number>"
$ git tag debian/<version>-<rev>

72

https://browse.dgit.debian.org/
https://www.chiark.greenend.org.uk/~ijackson/2015/debconf-dgit-talk/slides.pdf
https://wiki.debian.org/DebianEvents/gb/2023/MiniDebConfCambridge/Jackson?action=AttachFile&do=get&target=slides.pdf

CHAPTER 10. PACKAGING WITH GIT 10.11. GBP IMPORT-DSCS --DEBSNAP

• Drop (== disable) an existing patch

– Comment out pertinent line in debian/patches/series
– Erase the patch itself (optional)

• Refresh debian/patches/* files to make “dpkg-source -b” work as expected after updating a Debian package
to the new upstream release.

$ git checkout master
$ gbp pq --force import # ensure patch-queue/master branch
gbp:info: ... imported on 'patch-queue/master
$ git checkout master
$ gbp import-orig --pristine-tar --uscan
...

gbp:info: Successfully imported version ?.?.? of ../packagename_?.?.?.orig. ←↩
tar.gz

$ gbp pq rebase
... resolve conflicts and commit to patch-queue/master branch
$ gbp pq export
gbp:info: On 'patch-queue/master', switching to 'master'
gbp:info: Generating patches from git (master..patch-queue/master)
$ git add debian/patches
$ git commit -m "Update patches"
$ dch -v <newversion>-1
$ git commit -a -m "release <newversion>-1"
$ git tag debian/<newversion>-1

10.11 gbp import-dscs --debsnap
For Debian source packages named “<source-package>” recorded in the snapshot.debian.org archive, an initial git
repository managed in “Section 10.5” with all of the Debian version history can be generated as follows.

$ gbp import-dscs --debsnap --pristine-tar <source-package>

10.12 Note on dgit-maint-debrebase workflow
Here are some hints around dgit-maint-debrebase(7). 2

• Use “dgit setup-new-tree” to prepare the local git working repository.

• The first maintainer modification commit should contain files only in the debian/ directory excluding files
in the debian/patches directory.

• debian/patches/* files are generated from the maintainer modification commit history using the “dgit quilt-
fixup” command automatically invoked from “dgit build” and “dgit push”.

• Use “git-debrebase new-version <new-version-tag>” to rebase the maintainer modification commit history
with automatically updated debian/changelog.

• Use “git-debrebase conclude” to make a new pseudomerge (== “git merge -s ours”) to record Debian
package with clean ff-history.

See dgit-maint-debrebase(7), dgit(1) and git-debrebase(1) for more.

2I may be incorrect, here.

73

http://snapshot.debian.org/

CHAPTER 10. PACKAGING WITH GIT 10.13. QUASI-NATIVE DEBIAN PACKAGING

10.13 Quasi-native Debian packaging
The quasi-native packaging scheme packages a source without the real upstream tarball using the non-native
package format.

Tip

Some people promote this quasi-native packaging scheme even for programs
written only for Debian since it helps to ease communication with the downstream
distros such as Ubuntu for bug fixes etc.

This quasi-native packaging scheme involves 2 preparation steps:

• Organize its source tree almost like native Debian package (see “Section 6.4”) with debian/* files with a
few exceptions:

– Make debian/source/format to contain “3.0 (quilt)” instead of “3.0 (native)” .
– Make debian/changelog to contain version-revision instead of version .

• Generate missing upstream tarball preferably without debian/* files.

– For Debian source format “3.0 (quilt)”, removal of files under debian/ directory is an optional action.

The rest is the same as the non-native packaging workflow as written in “Section 6.1”.
Although this can be done in many ways (“Section 15.4”), you can use the Git repository and “git deborig” as:

$ cd /path/to/<dirname>
$ dch -r
... set its <version>-<revision>, e.g., 1.0-1
$ git tag -s debian/1.0-1
$ git rm -rf debian
$ git tag -s upstream/1.0
$ git commit -m upstream/1.0
$ git reset --hard HEAD^
$ git deborig
$ sbuild

74

Chapter 11

Tips

Please also read insightful pages linked from “Notes on Debian” by Russ Allbery (long time Debian developer)
which have best practices for advanced packaging topics.

11.1 Build under UTF-8
The default locale of the build environment is C.

Some programs such as the read function of Python3 change their behavior depending on the locale.
Adding the following code to the debian/rules file ensures building the program under the C.UTF-8 locale.

LC_ALL := C.UTF-8
export LC_ALL

11.2 UTF-8 conversion
If upstream documents are encoded in old encoding schemes, converting them to UTF-8 is a good idea.

Use the iconv command in the libc-bin package to convert the encoding of plain text files.

$ iconv -f latin1 -t utf8 foo_in.txt > foo_out.txt

Use w3m(1) to convert from HTML files to UTF-8 plain text files. When you do this, make sure to execute it
under UTF-8 locale.

$ LC_ALL=C.UTF-8 w3m -o display_charset=UTF-8 \
-cols 70 -dump -no-graph -T text/html \
< foo_in.html > foo_out.txt

Run these scripts in the override_dh_* target of the debian/rules file.

11.3 Hints for Debugging
When you face build problems or core dumps of generated binary programs, you need to resolve them yourself.
That’s debug.

This is too deep a topic to describe here. So, let me just list few pointers and hints for some typical debug tools.

• Wikipedia: “core dump”

– “man core”
– Update the “/etc/security/limits.conf” file to include the following:

* soft core unlimited

– “ulimit -c unlimited” in ~/.bashrc
– “ulimit -a” to check
– Press Ctrl-\ or “kill -ABRT ’PID’” to make a core dump file

75

https://www.eyrie.org/~eagle/notes/debian/
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Core_dump

CHAPTER 11. TIPS 11.3. HINTS FOR DEBUGGING

• gdb - The GNU Debugger

– “info gdb”
– “Debugging with GDB” in /usr/share/doc/gdb-doc/html/gdb/index.html

• strace - Trace system calls and signals

– Use strace-graph script found in /usr/share/doc/strace/examples/ to make a nice tree view
– “man strace”

• ltrace - Trace library calls

– “man ltrace”

• “sh -n script.sh” - Syntax check of a Shell script

• “sh -x script.sh” - Trace a Shell script

• “python3 -m py_compile script.py” - Syntax check of a Python script

• “python3 -mtrace --trace script.py” - Trace a Python script

• “perl -I ../libpath -c script.pl” - Syntax check of a Perl script

• “perl -d:Trace script.pl” - Trace a Perl script

– Install the libterm-readline-gnu-perl package or its equivalent to add input line editing capability with
history support.

• lsof - List open files by processes

– “man lsof”

Tip

The script command records console outputs.

Tip

The screen and tmux commands used with the ssh command offer secure and
robust remote connection terminals.

Tip

A Python- and Shell-like REPL (=READ + EVAL + PRINT + LOOP) environment
for Perl is offered by the reply command from the libreply-perl (new) package
and the re.pl command from the libdevel-repl-perl (old) package.

Tip

The rlwrap and rlfe commands add input line editing capability with history sup-
port to any interactive commands. E.g. “rlwrap dash -i’” .

76

Chapter 12

Tool usages

Here are some notable tools around Debian packaging.

Note

The description in this section is too terse to be useful for most of the prospective
maintainers. This is the intentional choice of the author. You are highly encour-
aged to search and read all the pertinent documents associated with the com-
mands used.

Note

Examples here use the gz-compression. The xz-compression may be used in-
stead.

12.1 debdiff
You can compare file contents in two source Debian packages with the debdiff command.

$ debdiff old-package.dsc new-package.dsc

You can also compare file lists in two sets of binary Debian packages with the debdiff command.

$ debdiff old-package.changes new-package.changes

These are useful to identify what has been changed in the source packages and to check for inadvertent changes
made when updating binary packages, such as unintentionally misplacing or removing files.

Debian now enforces the source-only upload when developing packages. So there may be 2 different *.changes
files:

• package_version-revision_source.changes for the normal source-only upload

• package_version-revision_arch.changes for the binary upload

12.2 dget
You can download the set of files for the Debian source package with the dget command.

$ dget https://www.example.org/path/to/package_version-rev.dsc

77

CHAPTER 12. TOOL USAGES 12.3. MK-ORIGTARGZ

12.3 mk-origtargz
You can make the upstream tarball ../foo-newversion.tar.[xg]z accessible from the Debian source tree as ../foo_newversion.orig.tar.[xg]z.

12.4 origtargz
You can fetch the pre-existing orig tarball of a Debian package from various sources, and unpack it with origtargz
command.

This is basically for -2, -3, … revisions.

12.5 git deborig
If the upstream project is hosted on a Git repository without the official release of tarball, you can generate its orig
tarball from the git repository for use by the Debain source package. Please, execute “git deborig” from the root of
the checked-out source tree.

This is basically for -1 revisions.

12.6 dpkg-source -b
The “dpkg-source -b” command packs the upstream source tree into the Debian source package.

It expects a series of patches in the debian/patches/ directory and their application sequence in debian/patch-
es/series.

It is compatible with dquilt (see “Section 4.4”) operations and understands the the patch application status from
the existance of .pc/applied-patches.

The dpkg-buildpackage command invokes “dpkg-source -b”.

12.7 dpkg-source -x
The “dpkg-source -x” command extracts source tree and applies the patches in the debian/patches/ directory using
the sequence specified in debian/patches/series to the upstream source tree. It also adds .pc/applied-patches. (See
“Section 10.6”.)

The “dpkg-source -x --skip-patches” command extracts source tree only. It doesn’t add .pc/applied-patches.
(See “Section 10.5”.)

Both extracted source trees are ready for building Debian binary packages with dpkg-buildpackage, dbuild,
sbuild, etc..

12.8 debc
You should install generated packages with the debc command to test it locally.

$ debc package_version-rev_arch.changes

12.9 piuparts
You should install generated packages with the piuparts command to test it automatically.

$ sudo piuparts package_version-rev_arch.changes

Note

This is a very slow process with remote APT package repository access.

78

CHAPTER 12. TOOL USAGES 12.10. BTS

12.10 bts
After uploading the package, you will receive bug reports. It is an important duty of a package maintainer to manage
these bugs properly as described in “5.8. Handling bugs” of the “Debian Developer’s Reference”.

The bts command is a handy tool to manage bugs on the “Debian Bug Tracking System”.

$ bts severity 123123 wishlist , tags -1 pending

79

https://www.debian.org/doc/manuals/developers-reference/pkgs.html#bug-handling
https://www.debian.org/Bugs/

Chapter 13

More Examples

There is an old Latin saying: “fabricando fit faber” (“practice makes perfect”).
It is highly recommended to practice and experiment with all the steps of Debian packaging with simple pack-

ages. This chapter provides you with many upstream cases for your practice.
This should also serve as introductory examples for many programing topics.

• Programing in the POSIX shell, Python3, and C.

• Method to create a desktop GUI program launcher with icon graphics.

• Conversion of a command from CLI to GUI.

• Conversion of a program to use gettext for internationalization and localization: POSIX shell and C sources.

• Overview of many build systems: Makefile, Python, Autotools, and CMake.

Please note that Debian takes a few things seriously:

• Free software (a.k.a. Libre software)

• Stability and security of OS

• Universal OS realized via:

– free choice for upstream sources,
– free choice of CPU architectures, and
– free choice of UI languages.

The typical packaging example presented in “Chapter 5” is the prerequisite for this chapter.
Some details are intentionally left vague in the following sections. Please try to read the pertinent documentation

and practice yourself to find them out.

Tip

The best source of a packaging example is the current Debian archive itself.
Please use the “Debian Code Search” service to find pertinent examples.

13.1 Cherry-pick templates
Here is an example of creating a simple Debian package from a zero content source on an empty directory.

This is a good platform to get all the template files without making a mess in the upstream source tree you are
working on.

Let’s assume this empty directory to be debhello-0.1.

80

https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Internationalization_and_localization
https://codesearch.debian.net/

CHAPTER 13. MORE EXAMPLES 13.1. CHERRY-PICK TEMPLATES

$ mkdir debhello-0.1
$ tree
.
+-- debhello-0.1

2 directories, 0 files

Let’s generate the maximum amount of template files.
Let’s also use the “-p debhello -t -u 0.1 -r 1” options to make the missing upstream tarball with default -x3 and

T options.

$ cd /path/to/debhello-0.1
$ debmake -p debhello -t -u 0.1 -r 1
I: set parameters
...

Let’s inspect generated template files.

$ cd /path/to
$ tree
.
+-- debhello-0.1
| +-- debian
| +-- README.Debian
| +-- README.source
| +-- changelog
| +-- clean
| +-- control
| +-- copyright
| +-- debhello.bug-control.ex
| +-- debhello.bug-presubj.ex
| +-- debhello.bug-script.ex
| +-- debhello.conffiles.ex
| +-- debhello.cron.d.ex
| +-- debhello.cron.daily.ex
| +-- debhello.cron.hourly.ex
| +-- debhello.cron.monthly.ex
| +-- debhello.cron.weekly.ex
| +-- debhello.default.ex
| +-- debhello.emacsen-install.ex
| +-- debhello.emacsen-remove.ex
| +-- debhello.emacsen-startup.ex
| +-- debhello.lintian-overrides.ex
| +-- debhello.service.ex
| +-- debhello.tmpfile.ex
| +-- dirs
| +-- gbp.conf
| +-- install
| +-- links
| +-- maintscript.ex
| +-- manpage.1.ex
| +-- manpage.asciidoc.ex
| +-- manpage.md.ex
| +-- manpage.sgml.ex
| +-- manpage.xml.ex
| +-- patches
| | +-- series
| +-- postinst.ex
| +-- postrm.ex
| +-- preinst.ex
| +-- prerm.ex
| +-- rules
| +-- salsa-ci.yml
| +-- source

81

CHAPTER 13. MORE EXAMPLES 13.2. NO MAKEFILE (SHELL, CLI)

| | +-- format
| | +-- lintian-overrides.ex
| | +-- local-options.ex
| | +-- local-patch-header.ex
| | +-- options.ex
| | +-- patch-header.ex
| +-- tests
| | +-- control
| +-- upstream
| | +-- metadata
| +-- watch
+-- debhello-0.1.tar.gz
+-- debhello_0.1.orig.tar.gz -> debhello-0.1.tar.gz

7 directories, 50 files

Now you can copy any of these generated template files in the debhello-0.1/debian/ directory to your package
as needed while renaming them as needed.

13.2 No Makefile (shell, CLI)
Here is an example of creating a simple Debian package from a POSIX shell CLI program without its build system.

Let’s assume this upstream tarball to be debhello-0.2.tar.gz.
This type of source has no automated means and files must be installed manually.
For example:

$ tar -xzmf debhello-0.2.tar.gz
$ cd debhello-0.2
$ sudo cp scripts/hello /bin/hello
...

Let’s get this source as tar file from a remote site and make it the Debian package.
Download debhello-0.2.tar.gz

$ wget http://www.example.org/download/debhello-0.2.tar.gz
...
$ tar -xzmf debhello-0.2.tar.gz
$ tree
.
+-- debhello-0.2
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-0.2.tar.gz

5 directories, 6 files

Here, the POSIX shell script hello is a very simple one.
hello (v=0.2)

$ cat debhello-0.2/scripts/hello
#!/bin/sh -e
echo "Hello from the shell!"
echo ""
echo -n "Type Enter to exit this program: "
read X

Here, hello.desktop supports the “Desktop Entry Specification”.
hello.desktop (v=0.2)

82

https://www.freedesktop.org/wiki/Specifications/desktop-entry-spec/

CHAPTER 13. MORE EXAMPLES 13.2. NO MAKEFILE (SHELL, CLI)

$ cat debhello-0.2/data/hello.desktop
[Desktop Entry]
Name=Hello
Name[fr]=Bonjour
Comment=Greetings
Comment[fr]=Salutations
Type=Application
Keywords=hello
Exec=hello
Terminal=true
Icon=hello.png
Categories=Utility;

Here, hello.png is the icon graphics file.
Let’s package this with the debmake command. Here, the -b’:sh’ option is used to specify that the generated

binary package is a shell script.

$ cd /path/to/debhello-0.2
$ debmake -b':sh' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="0.2", rev="1"
I: *** start packaging in "debhello-0.2". ***
I: provide debhello_0.2.orig.tar.gz for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-0.2.tar.gz debhello_0.2.orig.tar.gz
I: pwd = "/path/to/debhello-0.2"
I: parse binary package settings: :sh
I: binary package=debhello Type=script / Arch=all M-A=foreign
I: analyze the source tree
I: build_type = Unknown
I: scan source for copyright+license text and file extensions
I: 25 %, ext = md
...

Let’s inspect notable template files generated.
The source tree after the basic debmake execution. (v=0.2)

$ cd /path/to
$ tree
.
+-- debhello-0.2
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- debian
| | +-- README.Debian
| | +-- README.source
| | +-- changelog
| | +-- clean
| | +-- control
| | +-- copyright
| | +-- dirs
| | +-- gbp.conf
| | +-- install
| | +-- links
| | +-- patches
| | | +-- series
| | +-- rules
| | +-- salsa-ci.yml
| | +-- source
| | | +-- format

83

CHAPTER 13. MORE EXAMPLES 13.2. NO MAKEFILE (SHELL, CLI)

| | | +-- local-options.ex
| | | +-- local-patch-header.ex
| | +-- tests
| | | +-- control
| | +-- upstream
| | | +-- metadata
| | +-- watch
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-0.2.tar.gz
+-- debhello_0.2.orig.tar.gz -> debhello-0.2.tar.gz

10 directories, 26 files

debian/rules (template file, v=0.2):

$ cd /path/to/debhello-0.2
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1

%:
dh $@

This is essentially the standard debian/rules file with the dh command. Since this is the script package, this
template debian/rules file has no build flag related contents.

debian/control (template file, v=0.2):

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends: debhelper-compat (= 13)
Standards-Version: 4.6.2
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends: ${misc:Depends}
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Since this is the shell script package, the debmake command sets “Architecture: all” and “Multi-Arch: for-
eign”. Also, it sets required substvar parameters as “Depends: ${misc:Depends}”. These are explained in “Chap-
ter 6”.

Since this upstream source lacks the upstream Makefile, that functionality needs to be provided by the main-
tainer. This upstream source contains only a script file and data files and no C source files; the build process can
be skipped but the install process needs to be implemented. For this case, this is achieved cleanly by adding the
debian/install and debian/manpages files without complicating the debian/rules file.

Let’s make this Debian package better as the maintainer.
debian/rules (maintainer version, v=0.2):

$ cd /path/to/debhello-0.2
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules

84

CHAPTER 13. MORE EXAMPLES 13.2. NO MAKEFILE (SHELL, CLI)

#!/usr/bin/make -f
export DH_VERBOSE = 1

%:
dh $@

debian/control (maintainer version, v=0.2):

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends: debhelper-compat (= 13)
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends: ${misc:Depends}
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Warning

If you leave “Section: unknown” in the template debian/control file unchanged,
the lintian error may cause a build failure.

debian/install (maintainer version, v=0.2):

$ vim debian/install
... hack, hack, hack, ...
$ cat debian/install
data/hello.desktop usr/share/applications
data/hello.png usr/share/pixmaps
scripts/hello usr/bin

debian/manpages (maintainer version, v=0.2):

$ vim debian/manpages
... hack, hack, hack, ...
$ cat debian/manpages
man/hello.1

There are several other template files under the debian/ directory. These also need to be updated.
Template files under debian/. (v=0.2):

$ rm -f debian/clean debian/dirs debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf

85

CHAPTER 13. MORE EXAMPLES 13.2. NO MAKEFILE (SHELL, CLI)

+-- install
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 13 files

You can create a non-native Debian package using the debuild command (or its equivalents) in this source tree.
The command output is very verbose and explains what it does as follows.

$ cd /path/to/debhello-0.2
$ debuild
dpkg-buildpackage -us -uc -ui -i
dpkg-buildpackage: info: source package debhello
dpkg-buildpackage: info: source version 0.2-1
dpkg-buildpackage: info: source distribution unstable
dpkg-buildpackage: info: source changed by Osamu Aoki <osamu@debian.org>
dpkg-source -i --before-build .
dpkg-buildpackage: info: host architecture amd64
debian/rules clean
dh clean

dh_clean
rm -f debian/debhelper-build-stamp

...
debian/rules binary
dh binary

dh_update_autotools_config
dh_autoreconf
create-stamp debian/debhelper-build-stamp
dh_prep

rm -f -- debian/debhello.substvars
rm -fr -- debian/.debhelper/generated/debhello/ debian/debhello/ debi...

dh_auto_install --destdir=debian/debhello/
...
Finished running lintian.

Let’s inspect the result.
The generated files of debhello version 0.2 by the debuild command:

$ cd /path/to
$ tree -FL 1
./
+-- debhello-0.2/
+-- debhello-0.2.tar.gz
+-- debhello_0.2-1.debian.tar.xz
+-- debhello_0.2-1.dsc
+-- debhello_0.2-1_all.deb
+-- debhello_0.2-1_amd64.build
+-- debhello_0.2-1_amd64.buildinfo
+-- debhello_0.2-1_amd64.changes
+-- debhello_0.2.orig.tar.gz -> debhello-0.2.tar.gz

2 directories, 8 files

You see all the generated files.

• The debhello_0.2.orig.tar.gz file is a symlink to the upstream tarball.

• The debhello_0.2-1.debian.tar.xz file contains the maintainer generated contents.

86

CHAPTER 13. MORE EXAMPLES 13.2. NO MAKEFILE (SHELL, CLI)

• The debhello_0.2-1.dsc file is the meta data file for the Debian source package.

• The debhello_0.2-1_all.deb file is the Debian binary package.

• The debhello_0.2-1_amd64.build file is the build log file.

• The debhello_0.2-1_amd64.buildinfo file is the meta data file generated by dpkg-genbuildinfo(1).

• The debhello_0.2-1_amd64.changes file is the meta data file for the Debian binary package.

The debhello_0.2-1.debian.tar.xz file contains the Debian changes to the upstream source as follows.
The compressed archive contents of debhello_0.2-1.debian.tar.xz:

$ tar -tzf debhello-0.2.tar.gz
debhello-0.2/
debhello-0.2/data/
debhello-0.2/data/hello.desktop
debhello-0.2/data/hello.png
debhello-0.2/man/
debhello-0.2/man/hello.1
debhello-0.2/scripts/
debhello-0.2/scripts/hello
debhello-0.2/README.md
$ tar --xz -tf debhello_0.2-1.debian.tar.xz
debian/
debian/README.Debian
debian/changelog
debian/control
debian/copyright
debian/gbp.conf
debian/install
debian/manpages
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

The debhello_0.2-1_amd64.deb file contains the files to be installed as follows.
The binary package contents of debhello_0.2-1_all.deb:

$ dpkg -c debhello_0.2-1_all.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/
drwxr-xr-x root/root/usr/bin/
-rwxr-xr-x root/root/usr/bin/hello
drwxr-xr-x root/root/usr/share/
drwxr-xr-x root/root/usr/share/applications/
-rw-r--r-- root/root/usr/share/applications/hello.desktop
drwxr-xr-x root/root/usr/share/doc/
drwxr-xr-x root/root/usr/share/doc/debhello/
-rw-r--r-- root/root/usr/share/doc/debhello/README.Debian
-rw-r--r-- root/root/usr/share/doc/debhello/changelog.Debian.gz
-rw-r--r-- root/root/usr/share/doc/debhello/copyright
drwxr-xr-x root/root/usr/share/man/
drwxr-xr-x root/root/usr/share/man/man1/
-rw-r--r-- root/root/usr/share/man/man1/hello.1.gz
drwxr-xr-x root/root/usr/share/pixmaps/
-rw-r--r-- root/root/usr/share/pixmaps/hello.png

Here is the generated dependency list of debhello_0.2-1_all.deb.
The generated dependency list of debhello_0.2-1_all.deb:

87

CHAPTER 13. MORE EXAMPLES 13.3. MAKEFILE (SHELL, CLI)

$ dpkg -f debhello_0.2-1_all.deb pre-depends \
depends recommends conflicts breaks

(No extra dependency packages required since this is a POSIX shell program.)

Note

If you wish to replace upstream provided PNG file data/hello.png with main-
tainer provided one debian/hello.png, editing debian/install isn’t enough. When
you add debian/hello.png, you need to add a line “include-binaries” to debian/-
source/options since PNG is a binary file. See dpkg-source(1).

13.3 Makefile (shell, CLI)
Here is an example of creating a simple Debian package from a POSIX shell CLI program using the Makefile as
its build system.

Let’s assume its upstream tarball to be debhello-1.0.tar.gz.
This type of source is meant to be installed as a non-system file as:

$ tar -xzmf debhello-1.0.tar.gz
$ cd debhello-1.0
$ make install

Debian packaging requires changing this “make install” process to install files to the target system image
location instead of the normal location under /usr/local.

Let’s get the source and make the Debian package.
Download debhello-1.0.tar.gz

$ wget http://www.example.org/download/debhello-1.0.tar.gz
...
$ tar -xzmf debhello-1.0.tar.gz
$ tree
.
+-- debhello-1.0
| +-- Makefile
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-1.0.tar.gz

5 directories, 7 files

Here, the Makefile uses $(DESTDIR) and $(prefix) properly. All other files are the same as in “Section 13.2”
and most of the packaging activities are the same.

Makefile (v=1.0)

$ cat debhello-1.0/Makefile
prefix = /usr/local

all:
: # do nothing

install:
install -D scripts/hello \

$(DESTDIR)$(prefix)/bin/hello

88

CHAPTER 13. MORE EXAMPLES 13.3. MAKEFILE (SHELL, CLI)

install -m 644 -D data/hello.desktop \
$(DESTDIR)$(prefix)/share/applications/hello.desktop

install -m 644 -D data/hello.png \
$(DESTDIR)$(prefix)/share/pixmaps/hello.png

install -m 644 -D man/hello.1 \
$(DESTDIR)$(prefix)/share/man/man1/hello.1

clean:
: # do nothing

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/man1/hello.1

.PHONY: all install clean distclean uninstall

Let’s package this with the debmake command. Here, the -b’:sh’ option is used to specify that the generated
binary package is a shell script.

$ cd /path/to/debhello-1.0
$ debmake -b':sh' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.0", rev="1"
I: *** start packaging in "debhello-1.0". ***
I: provide debhello_1.0.orig.tar.gz for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.0.tar.gz debhello_1.0.orig.tar.gz
I: pwd = "/path/to/debhello-1.0"
I: parse binary package settings: :sh
I: binary package=debhello Type=script / Arch=all M-A=foreign
I: analyze the source tree
I: build_type = make
I: scan source for copyright+license text and file extensions
I: 25 %, ext = md
...

Let’s inspect the notable template files generated.
debian/rules (template file, v=1.0):

$ cd /path/to/debhello-1.0
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1

%:
dh $@

#override_dh_auto_install:
dh_auto_install -- prefix=/usr

#override_dh_install:
dh_install --list-missing -X.pyc -X.pyo

Let’s make this Debian package better as the maintainer.
debian/rules (maintainer version, v=1.0):

$ cd /path/to/debhello-1.0
$ vim debian/rules

89

CHAPTER 13. MORE EXAMPLES 13.4. PYPROJECT.TOML (PYTHON3, CLI)

... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1

%:
dh $@

override_dh_auto_install:
dh_auto_install -- prefix=/usr

Since this upstream source has the proper upstream Makefile, there is no need to create debian/install and
debian/manpages files.

The debian/control file is exactly the same as the one in “Section 13.2”.
There are several other template files under the debian/ directory. These also need to be updated.
Template files under debian/. (v=1.0):

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 11 files

The rest of the packaging activities are practically the same as the ones in “Section 13.2”.

13.4 pyproject.toml (Python3, CLI)
Here is an example of creating a simple Debian package from a Python3 CLI program using pyproject.toml.

Let’s get the source and make the Debian package.
Download debhello-1.1.tar.gz

$ wget http://www.example.org/download/debhello-1.1.tar.gz
...
$ tar -xzmf debhello-1.1.tar.gz
$ tree
.
+-- debhello-1.1
| +-- LICENSE
| +-- MANIFEST.in
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- manpages
| | +-- hello.1
| +-- pyproject.toml
| +-- src

90

CHAPTER 13. MORE EXAMPLES 13.4. PYPROJECT.TOML (PYTHON3, CLI)

| +-- debhello
| +-- __init__.py
| +-- main.py
+-- debhello-1.1.tar.gz

6 directories, 10 files

Here, the content of this debhello source tree as follows.
pyproject.toml (v=1.1) — PEP 517 configuration

$ cat debhello-1.1/pyproject.toml
[build-system]
requires = ["setuptools >= 61.0"] # REQUIRED if [build-system] table is used...
build-backend = "setuptools.build_meta" # If not defined, then legacy behavi...

[project]
name = "debhello"
version = "1.1.0"
description = "Hello Python (CLI)"
readme = {file = "README.md", content-type = "text/markdown"}
requires-python = ">=3.12"
license = {file = "LICENSE.txt"}
keywords = ["debhello"]
authors = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
maintainers = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",

"Topic :: System :: Archiving :: Packaging",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",
Others
"Operating System :: POSIX :: Linux",
"Natural Language :: English",

]
[project.urls]
"Homepage" = "https://salsa.debian.org/debian/debmake"
"Bug Reports" = "https://salsa.debian.org/debian/debmake/issues"
"Source" = "https://salsa.debian.org/debian/debmake"
[project.scripts]
hello = "debhello.main:main"
[tool.setuptools]
package-dir = {"" = "src"}
packages = ["debhello"]
include-package-data = true

MANIFEST.in (v=1.1) — for tar-ball.

$ cat debhello-1.1/MANIFEST.in
include data/*
include manpages/*

src/debhello/__init__.py (v=1.1)

$ cat debhello-1.1/src/debhello/__init__.py
"""
debhello program (CLI)
"""

src/debhello/main.py (v=1.1) — command entry point

91

CHAPTER 13. MORE EXAMPLES 13.4. PYPROJECT.TOML (PYTHON3, CLI)

$ cat debhello-1.1/src/debhello/main.py
"""
debhello program
"""

import sys

__version__ = '1.1.0'

def main(): # needed for console script
print(' ========== Hello Python3 ==========')
print('argv = {}'.format(sys.argv))
print('version = {}'.format(debhello.__version__))
return

if __name__ == "__main__":
sys.exit(main())

Let’s package this with the debmake command. Here, the -b’:py3’ option is used to specify the generated
binary package containing Python3 script and module files.

$ cd /path/to/debhello-1.1
$ debmake -b':py3' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.1", rev="1"
I: *** start packaging in "debhello-1.1". ***
I: provide debhello_1.1.orig.tar.gz for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.1.tar.gz debhello_1.1.orig.tar.gz
I: pwd = "/path/to/debhello-1.1"
I: parse binary package settings: :py3
I: binary package=debhello Type=python3 / Arch=all M-A=foreign
I: analyze the source tree
W: setuptools build system.
I: build_type = Python (pyproject.toml: PEP-518, PEP-621, PEP-660)
I: scan source for copyright+license text and file extensions
...

Let’s inspect the notable template files generated.
debian/rules (template file, v=1.1):

$ cd /path/to/debhello-1.1
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1

%:
dh $@ --with python3 --buildsystem=pybuild

This is essentially the standard debian/rules file with the dh command.
The use of the “--with python3” option invokes dh_python3 to calculate Python dependencies, add maintainer

scripts to byte compiled files, etc. See dh_python3(1).
The use of the “--buildsystem=pybuild” option invokes various build systems for requested Python versions

in order to build modules and extensions. See pybuild(1).
debian/control (template file, v=1.1):

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>

92

CHAPTER 13. MORE EXAMPLES 13.4. PYPROJECT.TOML (PYTHON3, CLI)

Build-Depends: debhelper-compat (= 13),
dh-python,
pybuild-plugin-pyproject,
python3-all,
python3-setuptools

Standards-Version: 4.6.2
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello
#X-Python3-Version: >= 3.7

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends: ${misc:Depends}, ${python3:Depends}
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Since this is the Python3 package, the debmake command sets “Architecture: all” and “Multi-Arch: for-
eign”. Also, it sets required substvar parameters as “Depends: ${python3:Depends}, ${misc:Depends}”. These
are explained in “Chapter 6”.

Let’s make this Debian package better as the maintainer.
debian/rules (maintainer version, v=1.1):

$ cd /path/to/debhello-1.1
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export PYBUILD_NAME=debhello
export PYBUILD_VERBOSE=1
export DH_VERBOSE=1

%:
dh $@ --with python3 --buildsystem=pybuild

debian/control (maintainer version, v=1.1):

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends: debhelper-compat (= 13),

pybuild-plugin-pyproject,
python3-all

Standards-Version: 4.6.2
Rules-Requires-Root: no
Vcs-Browser: https://salsa.debian.org/debian/debmake-doc
Vcs-Git: https://salsa.debian.org/debian/debmake-doc.git
Homepage: https://salsa.debian.org/debian/debmake-doc

Package: debhello
Architecture: all
Depends: ${misc:Depends}, ${python3:Depends}
Description: Simple packaging example for debmake
This is an example package to demonstrate Debian packaging using
the debmake command.
.
The generated Debian package uses the dh command offered by the
debhelper package and the dpkg source format `3.0 (quilt)'.

93

CHAPTER 13. MORE EXAMPLES 13.4. PYPROJECT.TOML (PYTHON3, CLI)

There are several other template files under the debian/ directory. These also need to be updated.
This debhello command comes with the upstream-provided manpage and desktop file but the upstream pypro-

ject.toml doesn’t install them. So you need to update debian/install and debian/manpages as follows:
debian/install (maintainer version, v=1.1):

$ vim debian/copyright
... hack, hack, hack, ...
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2024 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

debian/manpages (maintainer version, v=1.1):

$ vim debian/install
... hack, hack, hack, ...
$ cat debian/install
data/hello.desktop usr/share/applications
data/hello.png usr/share/pixmaps

The rest of the packaging activities are practically the same as the ones in “Section 13.3”.
Template files under debian/. (v=1.1):

$ rm -f debian/clean debian/dirs debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- install
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata

94

CHAPTER 13. MORE EXAMPLES 13.5. MAKEFILE (SHELL, GUI)

+-- watch

4 directories, 13 files

Here is the generated dependency list of debhello_1.1-1_all.deb.
The generated dependency list of debhello_1.1-1_all.deb:

$ dpkg -f debhello_1.1-1_all.deb pre-depends \
depends recommends conflicts breaks

Depends: python3:any

13.5 Makefile (shell, GUI)
Here is an example of creating a simple Debian package from a POSIX shell GUI program using the Makefile as
its build system.

This upstream is based on “Section 13.3” with enhanced GUI support.
Let’s assume its upstream tarball to be debhello-1.2.tar.gz.
Let’s get the source and make the Debian package.
Download debhello-1.2.tar.gz

$ wget http://www.example.org/download/debhello-1.2.tar.gz
...
$ tar -xzmf debhello-1.2.tar.gz
$ tree
.
+-- debhello-1.2
| +-- Makefile
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-1.2.tar.gz

5 directories, 7 files

Here, the hello has been re-written to use the zenity command to make this a GTK+ GUI program.
hello (v=1.2)

$ cat debhello-1.2/scripts/hello
#!/bin/sh -e
zenity --info --title "hello" --text "Hello from the shell!"

Here, the desktop file is updated to be Terminal=false as a GUI program.
hello.desktop (v=1.2)

$ cat debhello-1.2/data/hello.desktop
[Desktop Entry]
Name=Hello
Name[fr]=Bonjour
Comment=Greetings
Comment[fr]=Salutations
Type=Application
Keywords=hello
Exec=hello
Terminal=false
Icon=hello.png
Categories=Utility;

95

CHAPTER 13. MORE EXAMPLES 13.5. MAKEFILE (SHELL, GUI)

All other files are the same as in “Section 13.3”.
Let’s package this with the debmake command. Here, the “-b’:sh’” option is used to specify that the generated

binary package is a shell script.

$ cd /path/to/debhello-1.2
$ debmake -b':sh' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.2", rev="1"
I: *** start packaging in "debhello-1.2". ***
I: provide debhello_1.2.orig.tar.gz for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.2.tar.gz debhello_1.2.orig.tar.gz
I: pwd = "/path/to/debhello-1.2"
I: parse binary package settings: :sh
I: binary package=debhello Type=script / Arch=all M-A=foreign
I: analyze the source tree
I: build_type = make
I: scan source for copyright+license text and file extensions
I: 25 %, ext = md
...

Let’s inspect the notable template files generated.
debian/control (template file, v=1.2):

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends: debhelper-compat (= 13)
Standards-Version: 4.6.2
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends: ${misc:Depends}
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Let’s make this Debian package better as the maintainer.
debian/control (maintainer version, v=1.2):

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends: debhelper-compat (= 13)
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends: zenity, ${misc:Depends}

96

CHAPTER 13. MORE EXAMPLES 13.6. PYPROJECT.TOML (PYTHON3, GUI)

Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Please note the manually added zenity dependency.
The debian/rules file is exactly the same as the one in “Section 13.3”.
There are several other template files under the debian/ directory. These also need to be updated.
Template files under debian/. (v=1.2):

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 11 files

The rest of the packaging activities are practically the same as in “Section 13.3”.
Here is the generated dependency list of debhello_1.2-1_all.deb.
The generated dependency list of debhello_1.2-1_all.deb:

$ dpkg -f debhello_1.2-1_all.deb pre-depends \
depends recommends conflicts breaks

Depends: zenity

13.6 pyproject.toml (Python3, GUI)
Here is an example of creating a simple Debian package from a Python3 GUI program using pyproject.toml.

Let’s assume this upstream tarball to be debhello-1.3.tar.gz.
Let’s get the source and make the Debian package.
Download debhello-1.3.tar.gz

$ wget http://www.example.org/download/debhello-1.3.tar.gz
...
$ tar -xzmf debhello-1.3.tar.gz
$ tree
.
+-- debhello-1.3
| +-- LICENSE
| +-- MANIFEST.in
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- manpages
| | +-- hello.1
| +-- pyproject.toml
| +-- src
| +-- debhello

97

CHAPTER 13. MORE EXAMPLES 13.6. PYPROJECT.TOML (PYTHON3, GUI)

| +-- __init__.py
| +-- main.py
+-- debhello-1.3.tar.gz

6 directories, 10 files

Here, the content of this debhello source tree as follows.
pyproject.toml (v=1.3) — PEP 517 configuration

$ cat debhello-1.3/pyproject.toml
[build-system]
requires = ["setuptools >= 61.0"] # REQUIRED if [build-system] table is used...
build-backend = "setuptools.build_meta" # If not defined, then legacy behavi...

[project]
name = "debhello"
version = "1.3.0"
description = "Hello Python (GUI)"
readme = {file = "README.md", content-type = "text/markdown"}
requires-python = ">=3.12"
license = {file = "LICENSE.txt"}
keywords = ["debhello"]
authors = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
maintainers = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",

"Topic :: System :: Archiving :: Packaging",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",
Others
"Operating System :: POSIX :: Linux",
"Natural Language :: English",

]
[project.urls]
"Homepage" = "https://salsa.debian.org/debian/debmake"
"Bug Reports" = "https://salsa.debian.org/debian/debmake/issues"
"Source" = "https://salsa.debian.org/debian/debmake"
[project.scripts]
hello = "debhello.main:main"
[tool.setuptools]
package-dir = {"" = "src"}
packages = ["debhello"]
include-package-data = true

MANIFEST.in (v=1.3) — for tar-ball.

$ cat debhello-1.3/MANIFEST.in
include data/*
include manpages/*

src/debhello/__init__.py (v=1.3)

$ cat debhello-1.3/src/debhello/__init__.py
"""
debhello program (GUI)
"""

src/debhello/main.py (v=1.3) — command entry point

98

CHAPTER 13. MORE EXAMPLES 13.6. PYPROJECT.TOML (PYTHON3, GUI)

$ cat debhello-1.3/src/debhello/main.py
#!/usr/bin/python3
from gi.repository import Gtk

__version__ = '1.3.0'

class TopWindow(Gtk.Window):

def __init__(self):
Gtk.Window.__init__(self)
self.title = "Hello World!"
self.counter = 0
self.border_width = 10
self.set_default_size(400, 100)
self.set_position(Gtk.WindowPosition.CENTER)
self.button = Gtk.Button(label="Click me!")
self.button.connect("clicked", self.on_button_clicked)
self.add(self.button)
self.connect("delete-event", self.on_window_destroy)

def on_window_destroy(self, *args):
Gtk.main_quit(*args)

def on_button_clicked(self, widget):
self.counter += 1
widget.set_label("Hello, World!\nClick count = %i" % self.counter)

def main():
window = TopWindow()
window.show_all()
Gtk.main()

if __name__ == '__main__':
main()

Let’s package this with the debmake command. Here, the -b’:py3’ option is used to specify that the generated
binary package contains Python3 script and module files.

$ cd /path/to/debhello-1.3
$ debmake -b':py3' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.3", rev="1"
I: *** start packaging in "debhello-1.3". ***
I: provide debhello_1.3.orig.tar.gz for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.3.tar.gz debhello_1.3.orig.tar.gz
I: pwd = "/path/to/debhello-1.3"
I: parse binary package settings: :py3
I: binary package=debhello Type=python3 / Arch=all M-A=foreign
I: analyze the source tree
W: setuptools build system.
I: build_type = Python (pyproject.toml: PEP-518, PEP-621, PEP-660)
I: scan source for copyright+license text and file extensions
...

The result is practically the same as in “Section 13.4”.
Let’s make this Debian package better as the maintainer.
debian/rules (maintainer version, v=1.3):

$ cd /path/to/debhello-1.3
$ vim debian/rules
... hack, hack, hack, ...

99

CHAPTER 13. MORE EXAMPLES 13.7. MAKEFILE (SINGLE-BINARY PACKAGE)

$ cat debian/rules
#!/usr/bin/make -f
export PYBUILD_NAME=debhello
export PYBUILD_VERBOSE=1
export DH_VERBOSE=1

%:
dh $@ --with python3 --buildsystem=pybuild

debian/control (maintainer version, v=1.3):

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends: debhelper-compat (= 13),

pybuild-plugin-pyproject,
python3-all

Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends: gir1.2-gtk-3.0, python3-gi, ${misc:Depends}, ${python3:Depends}
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Please note the manually added python3-gi and gir1.2-gtk-3.0 dependencies.
The rest of the packaging activities are practically the same as in <pyproject>>.
Here is the generated dependency list of debhello_1.3-1_all.deb.
The generated dependency list of debhello_1.3-1_all.deb:

$ dpkg -f debhello_1.3-1_all.deb pre-depends \
depends recommends conflicts breaks

Depends: gir1.2-gtk-3.0, python3-gi, python3:any

13.7 Makefile (single-binary package)
Here is an example of creating a simple Debian package from a simple C source program using the Makefile as its
build system.

This is an enhanced upstream source example for “Chapter 5”. This comes with the manpage, the desktop file,
and the desktop icon. This also links to an external library libm to be a more practical example.

Let’s assume this upstream tarball to be debhello-1.4.tar.gz.
This type of source is meant to be installed as a non-system file as:

$ tar -xzmf debhello-1.4.tar.gz
$ cd debhello-1.4
$ make
$ make install

Debian packaging requires changing this “make install” process to install files into the target system image
location instead of the normal location under /usr/local.

Let’s get the source and make the Debian package.
Download debhello-1.4.tar.gz

$ wget http://www.example.org/download/debhello-1.4.tar.gz
...

100

CHAPTER 13. MORE EXAMPLES 13.7. MAKEFILE (SINGLE-BINARY PACKAGE)

$ tar -xzmf debhello-1.4.tar.gz
$ tree
.
+-- debhello-1.4
| +-- LICENSE
| +-- Makefile
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- src
| +-- config.h
| +-- hello.c
+-- debhello-1.4.tar.gz

5 directories, 9 files

Here, the contents of this source are as follows.
src/hello.c (v=1.4):

$ cat debhello-1.4/src/hello.c
#include "config.h"
#include <math.h>
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
return 0;

}

src/config.h (v=1.4):

$ cat debhello-1.4/Makefile
prefix = /usr/local

all: src/hello

src/hello: src/hello.c
$(CC) $(CPPFLAGS) $(CFLAGS) $(LDFLAGS) -o $@ $^ -lm

install: src/hello
install -D src/hello \

$(DESTDIR)$(prefix)/bin/hello
install -m 644 -D data/hello.desktop \

$(DESTDIR)$(prefix)/share/applications/hello.desktop
install -m 644 -D data/hello.png \

$(DESTDIR)$(prefix)/share/pixmaps/hello.png
install -m 644 -D man/hello.1 \

$(DESTDIR)$(prefix)/share/man/man1/hello.1

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/man1/hello.1

101

CHAPTER 13. MORE EXAMPLES 13.7. MAKEFILE (SINGLE-BINARY PACKAGE)

.PHONY: all install clean distclean uninstall

Makefile (v=1.4):

$ cat debhello-1.4/src/config.h
#define PACKAGE_AUTHOR "Osamu Aoki"

Please note that this Makefile has the proper install target for the manpage, the desktop file, and the desktop
icon.

Let’s package this with the debmake command.

$ cd /path/to/debhello-1.4
$ debmake -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.4", rev="1"
I: *** start packaging in "debhello-1.4". ***
I: provide debhello_1.4.orig.tar.gz for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.4.tar.gz debhello_1.4.orig.tar.gz
I: pwd = "/path/to/debhello-1.4"
I: parse binary package settings:
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: analyze the source tree
I: build_type = make
I: scan source for copyright+license text and file extensions
I: 33 %, ext = c
...

The result is practically the same as in “Section 5.6”.
Let’s make this Debian package, which is practically the same as in “Section 5.7”, better as the maintainer.
If the DEB_BUILD_MAINT_OPTIONS environment variable is not exported in debian/rules, lintian warns

“W: debhello: hardening-no-relro usr/bin/hello” for the linking of libm.
The debian/control file makes it exactly the same as the one in “Section 5.7”, since the libm library is always

available as a part of libc6 (Priority: required).
There are several other template files under the debian/ directory. These also need to be updated.
Template files under debian/. (v=1.4):

$ rm -f debian/clean debian/dirs debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- install
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 12 files

The rest of the packaging activities are practically the same as the one in “Section 5.8”.
Here is the generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=1.4):

102

CHAPTER 13. MORE EXAMPLES 13.8. MAKEFILE.IN + CONFIGURE …

$ dpkg -f debhello-dbgsym_1.4-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 1.4-1)
$ dpkg -f debhello_1.4-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.34)

13.8 Makefile.in + configure (single-binary package)
Here is an example of creating a simple Debian package from a simple C source program using Makefile.in and
configure as its build system.

This is an enhanced upstream source example for “Section 13.7”. This also links to an external library, libm, and
this source is configurable using arguments to the configure script, which generates the Makefile and src/config.h
files.

Let’s assume this upstream tarball to be debhello-1.5.tar.gz.
This type of source is meant to be installed as a non-system file, for example, as:

$ tar -xzmf debhello-1.5.tar.gz
$ cd debhello-1.5
$./configure --with-math
$ make
$ make install

Let’s get the source and make the Debian package.
Download debhello-1.5.tar.gz

$ wget http://www.example.org/download/debhello-1.5.tar.gz
...
$ tar -xzmf debhello-1.5.tar.gz
$ tree
.
+-- debhello-1.5
| +-- LICENSE
| +-- Makefile.in
| +-- README.md
| +-- configure
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- src
| +-- hello.c
+-- debhello-1.5.tar.gz

5 directories, 9 files

Here, the contents of this source are as follows.
src/hello.c (v=1.5):

$ cat debhello-1.5/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
#ifdef WITH_MATH

printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));

103

CHAPTER 13. MORE EXAMPLES 13.8. MAKEFILE.IN + CONFIGURE …

#else
printf("I can't do MATH!\n");

#endif
return 0;

}

Makefile.in (v=1.5):

$ cat debhello-1.5/Makefile.in
prefix = @prefix@

all: src/hello

src/hello: src/hello.c
$(CC) @VERBOSE@ \

$(CPPFLAGS) \
$(CFLAGS) \
$(LDFLAGS) \
-o $@ $^ \
@LINKLIB@

install: src/hello
install -D src/hello \

$(DESTDIR)$(prefix)/bin/hello
install -m 644 -D data/hello.desktop \

$(DESTDIR)$(prefix)/share/applications/hello.desktop
install -m 644 -D data/hello.png \

$(DESTDIR)$(prefix)/share/pixmaps/hello.png
install -m 644 -D man/hello.1 \

$(DESTDIR)$(prefix)/share/man/man1/hello.1

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/man1/hello.1

.PHONY: all install clean distclean uninstall

configure (v=1.5):

$ cat debhello-1.5/configure
#!/bin/sh -e
default values
PREFIX="/usr/local"
VERBOSE=""
WITH_MATH="0"
LINKLIB=""
PACKAGE_AUTHOR="John Doe"

parse arguments
while ["${1}" != ""]; do
VAR="${1%=*}" # Drop suffix =*
VAL="${1#*=}" # Drop prefix *=
case "${VAR}" in
--prefix)
PREFIX="${VAL}"
;;

--verbose|-v)
VERBOSE="-v"

104

CHAPTER 13. MORE EXAMPLES 13.8. MAKEFILE.IN + CONFIGURE …

;;
--with-math)
WITH_MATH="1"
LINKLIB="-lm"
;;

--author)
PACKAGE_AUTHOR="${VAL}"
;;

*)
echo "W: Unknown argument: ${1}"

esac
shift

done

setup configured Makefile and src/config.h
sed -e "s,@prefix@,${PREFIX}," \

-e "s,@VERBOSE@,${VERBOSE}," \
-e "s,@LINKLIB@,${LINKLIB}," \
<Makefile.in >Makefile

if ["${WITH_MATH}" = 1]; then
echo "#define WITH_MATH" >src/config.h
else
echo "/* not defined: WITH_MATH */" >src/config.h
fi
echo "#define PACKAGE_AUTHOR \"${PACKAGE_AUTHOR}\"" >>src/config.h

Please note that the configure command replaces strings with @… @ in Makefile.in to produce Makefile and
creates src/config.h.

Let’s package this with the debmake command.

$ cd /path/to/debhello-1.5
$ debmake -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.5", rev="1"
I: *** start packaging in "debhello-1.5". ***
I: provide debhello_1.5.orig.tar.gz for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.5.tar.gz debhello_1.5.orig.tar.gz
I: pwd = "/path/to/debhello-1.5"
I: parse binary package settings:
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: analyze the source tree
I: build_type = configure
I: scan source for copyright+license text and file extensions
I: 17 %, ext = in
...

The result is similar to “Section 5.6” but not exactly the same.
Let’s inspect the notable template files generated.
debian/rules (template file, v=1.5):

$ cd /path/to/debhello-1.5
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@

105

CHAPTER 13. MORE EXAMPLES 13.9. AUTOTOOLS (SINGLE-BINARY PACKAGE)

Let’s make this Debian package better as the maintainer.
debian/rules (maintainer version, v=1.5):

$ cd /path/to/debhello-1.5
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

override_dh_auto_configure:
dh_auto_configure -- \

--with-math \
--author="Osamu Aoki"

There are several other template files under the debian/ directory. These also need to be updated.
The rest of the packaging activities are practically the same as the one in “Section 5.8”.

13.9 Autotools (single-binary package)
Here is an example of creating a simple Debian package from a simple C source program using Autotools = Auto-
conf and Automake (Makefile.am and configure.ac) as its build system.

This source usually comes with the upstream auto-generated Makefile.in and configure files, too. This source
can be packaged using these files as in “Section 13.8” with the help of the autotools-dev package.

The better alternative is to regenerate these files using the latest Autoconf and Automake packages if the up-
stream provided Makefile.am and configure.ac are compatible with the latest version. This is advantageous for
porting to new CPU architectures, etc. This can be automated by using the “--with autoreconf” option for the dh
command.

Let’s assume this upstream tarball to be debhello-1.6.tar.gz.
This type of source is meant to be installed as a non-system file, for example, as:

$ tar -xzmf debhello-1.6.tar.gz
$ cd debhello-1.6
$ autoreconf -ivf # optional
$./configure --with-math
$ make
$ make install

Let’s get the source and make the Debian package.
Download debhello-1.6.tar.gz

$ wget http://www.example.org/download/debhello-1.6.tar.gz
...
$ tar -xzmf debhello-1.6.tar.gz
$ tree
.
+-- debhello-1.6
| +-- LICENSE
| +-- Makefile.am
| +-- README.md
| +-- configure.ac
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- Makefile.am
| | +-- hello.1

106

CHAPTER 13. MORE EXAMPLES 13.9. AUTOTOOLS (SINGLE-BINARY PACKAGE)

| +-- src
| +-- Makefile.am
| +-- hello.c
+-- debhello-1.6.tar.gz

5 directories, 11 files

Here, the contents of this source are as follows.
src/hello.c (v=1.6):

$ cat debhello-1.6/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
#ifdef WITH_MATH

printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
#else

printf("I can't do MATH!\n");
#endif

return 0;
}

Makefile.am (v=1.6):

$ cat debhello-1.6/Makefile.am
SUBDIRS = src man
$ cat debhello-1.6/man/Makefile.am
dist_man_MANS = hello.1
$ cat debhello-1.6/src/Makefile.am
bin_PROGRAMS = hello
hello_SOURCES = hello.c

configure.ac (v=1.6):

$ cat debhello-1.6/configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello],[2.1],[foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])
AM_INIT_AUTOMAKE([foreign])
Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
echo "Add --with-math option functionality to ./configure"
AC_ARG_WITH([math],
[AS_HELP_STRING([--with-math],
[compile with math library @<:@default=yes@:>@])],

[],
[with_math="yes"]
)

echo "==== withval := \"$withval\""
echo "==== with_math := \"$with_math\""
m4sh if-else construct
AS_IF([test "x$with_math" != "xno"],[
echo "==== Check include: math.h"
AC_CHECK_HEADER(math.h,[],[
AC_MSG_ERROR([Couldn't find math.h.])

107

CHAPTER 13. MORE EXAMPLES 13.9. AUTOTOOLS (SINGLE-BINARY PACKAGE)

])
echo "==== Check library: libm"
AC_SEARCH_LIBS(atan, [m])
#AC_CHECK_LIB(m, atan)
echo "==== Build with LIBS := \"$LIBS\""
AC_DEFINE(WITH_MATH, [1], [Build with the math library])

],[
echo "==== Skip building with math.h."
AH_TEMPLATE(WITH_MATH, [Build without the math library])

])
Checks for programs.
AC_PROG_CC
AC_CONFIG_FILES([Makefile

man/Makefile
src/Makefile])

AC_OUTPUT

Tip

Without “foreign” strictness level specified in AM_INIT_AUTOMAKE() as above,
automake defaults to “gnu” strictness level requiring several files in the top-level
directory. See “3.2 Strictness” in the automake document.

Let’s package this with the debmake command.

$ cd /path/to/debhello-1.6
$ debmake -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.6", rev="1"
I: *** start packaging in "debhello-1.6". ***
I: provide debhello_1.6.orig.tar.gz for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.6.tar.gz debhello_1.6.orig.tar.gz
I: pwd = "/path/to/debhello-1.6"
I: parse binary package settings:
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: analyze the source tree
I: build_type = Autotools with autoreconf
I: scan source for copyright+license text and file extensions
I: 33 %, ext = am
...

The result is similar to “Section 13.8” but not exactly the same.
Let’s inspect the notable template files generated.
debian/rules (template file, v=1.6):

$ cd /path/to/debhello-1.6
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@ --with autoreconf

#override_dh_install:

108

CHAPTER 13. MORE EXAMPLES 13.10. CMAKE (SINGLE-BINARY PACKAGE)

dh_install --list-missing -X.la -X.pyc -X.pyo

Let’s make this Debian package better as the maintainer.
debian/rules (maintainer version, v=1.6):

$ cd /path/to/debhello-1.6
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@ --with autoreconf

override_dh_auto_configure:
dh_auto_configure -- \

--with-math

There are several other template files under the debian/ directory. These also need to be updated.
The rest of the packaging activities are practically the same as the one in “Section 5.8”.

13.10 CMake (single-binary package)
Here is an example of creating a simple Debian package from a simple C source program using CMake (CMakeLists.txt
and some files such as config.h.in) as its build system.

The cmake command generates the Makefile file based on the CMakeLists.txt file and its -D option. It
also configures the file as specified in its configure_file(…) by replacing strings with @… @ and changing the
#cmakedefine … line.

Let’s assume this upstream tarball to be debhello-1.7.tar.gz.
This type of source is meant to be installed as a non-system file, for example, as:

$ tar -xzmf debhello-1.7.tar.gz
$ cd debhello-1.7
$ mkdir obj-x86_64-linux-gnu # for out-of-tree build
$ cd obj-x86_64-linux-gnu
$ cmake ..
$ make
$ make install

Let’s get the source and make the Debian package.
Download debhello-1.7.tar.gz

$ wget http://www.example.org/download/debhello-1.7.tar.gz
...
$ tar -xzmf debhello-1.7.tar.gz
$ tree
.
+-- debhello-1.7
| +-- CMakeLists.txt
| +-- LICENSE
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- CMakeLists.txt
| | +-- hello.1
| +-- src
| +-- CMakeLists.txt
| +-- config.h.in

109

CHAPTER 13. MORE EXAMPLES 13.10. CMAKE (SINGLE-BINARY PACKAGE)

| +-- hello.c
+-- debhello-1.7.tar.gz

5 directories, 11 files

Here, the contents of this source are as follows.
src/hello.c (v=1.7):

$ cat debhello-1.7/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
#ifdef WITH_MATH

printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
#else

printf("I can't do MATH!\n");
#endif

return 0;
}

src/config.h.in (v=1.7):

$ cat debhello-1.7/src/config.h.in
/* name of the package author */
#define PACKAGE_AUTHOR "@PACKAGE_AUTHOR@"
/* math library support */
#cmakedefine WITH_MATH

CMakeLists.txt (v=1.7):

$ cat debhello-1.7/CMakeLists.txt
cmake_minimum_required(VERSION 2.8)
project(debhello)
set(PACKAGE_AUTHOR "Osamu Aoki")
add_subdirectory(src)
add_subdirectory(man)
$ cat debhello-1.7/man/CMakeLists.txt
install(
FILES ${CMAKE_CURRENT_SOURCE_DIR}/hello.1
DESTINATION share/man/man1

)
$ cat debhello-1.7/src/CMakeLists.txt
Always define HAVE_CONFIG_H
add_definitions(-DHAVE_CONFIG_H)
Interactively define WITH_MATH
option(WITH_MATH "Build with math support" OFF)
#variable_watch(WITH_MATH)
Generate config.h from config.h.in
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/config.h.in"
"${CMAKE_CURRENT_BINARY_DIR}/config.h"

)
include_directories("${CMAKE_CURRENT_BINARY_DIR}")
add_executable(hello hello.c)
install(TARGETS hello
RUNTIME DESTINATION bin

)

Let’s package this with the debmake command.

110

CHAPTER 13. MORE EXAMPLES 13.10. CMAKE (SINGLE-BINARY PACKAGE)

$ cd /path/to/debhello-1.7
$ debmake -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.7", rev="1"
I: *** start packaging in "debhello-1.7". ***
I: provide debhello_1.7.orig.tar.gz for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.7.tar.gz debhello_1.7.orig.tar.gz
I: pwd = "/path/to/debhello-1.7"
I: parse binary package settings:
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: analyze the source tree
I: build_type = Cmake
I: scan source for copyright+license text and file extensions
I: 33 %, ext = text
...

The result is similar to “Section 13.8” but not exactly the same.
Let’s inspect the notable template files generated.
debian/rules (template file, v=1.7):

$ cd /path/to/debhello-1.7
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@

#override_dh_auto_configure:
dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_TARGET_MULTIARCH)"

debian/control (template file, v=1.7):

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends: cmake, debhelper-compat (= 13)
Standards-Version: 4.6.2
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends: ${misc:Depends}, ${shlibs:Depends}
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Let’s make this Debian package better as the maintainer.
debian/rules (maintainer version, v=1.7):

$ cd /path/to/debhello-1.7

111

CHAPTER 13. MORE EXAMPLES 13.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

override_dh_auto_configure:
dh_auto_configure -- -DWITH-MATH=1

debian/control (maintainer version, v=1.7):

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends: cmake, debhelper-compat (= 13)
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends: ${misc:Depends}, ${shlibs:Depends}
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

There are several other template files under the debian/ directory. These also need to be updated.
The rest of the packaging activities are practically the same as the one in “Section 13.8”.

13.11 Autotools (multi-binary package)
Here is an example of creating a set of Debian binary packages including the executable package, the shared
library package, the development file package, and the debug symbol package from a simple C source program
using Autotools = Autoconf and Automake (which use Makefile.am and configure.ac as their input files) as its
build system.

Let’s package this in the same way as in “Section 13.9”.
Let’s assume this upstream tarball to be debhello-2.0.tar.gz.
This type of source is meant to be installed as a non-system file, for example, as:

$ tar -xzmf debhello-2.0.tar.gz
$ cd debhello-2.0
$ autoreconf -ivf # optional
$./configure --with-math
$ make
$ make install

Let’s get the source and make the Debian package.
Download debhello-2.0.tar.gz

$ wget http://www.example.org/download/debhello-2.0.tar.gz
...
$ tar -xzmf debhello-2.0.tar.gz
$ tree

112

CHAPTER 13. MORE EXAMPLES 13.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

.
+-- debhello-2.0
| +-- LICENSE
| +-- Makefile.am
| +-- README.md
| +-- configure.ac
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- lib
| | +-- Makefile.am
| | +-- sharedlib.c
| | +-- sharedlib.h
| +-- man
| | +-- Makefile.am
| | +-- hello.1
| +-- src
| +-- Makefile.am
| +-- hello.c
+-- debhello-2.0.tar.gz

6 directories, 14 files

Here, the contents of this source are as follows.
src/hello.c (v=2.0):

$ cat debhello-2.0/src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
sharedlib();
return 0;

}

lib/sharedlib.h and lib/sharedlib.c (v=1.6):

$ cat debhello-2.0/lib/sharedlib.h
int sharedlib();
$ cat debhello-2.0/lib/sharedlib.c
#include <stdio.h>
int
sharedlib()
{

printf("This is a shared library!\n");
return 0;

}

Makefile.am (v=2.0):

$ cat debhello-2.0/Makefile.am
recursively process `Makefile.am` in SUBDIRS
SUBDIRS = lib src man
$ cat debhello-2.0/man/Makefile.am
manpages (distributed in the source package)
dist_man_MANS = hello.1
$ cat debhello-2.0/lib/Makefile.am
libtool librares to be produced
lib_LTLIBRARIES = libsharedlib.la

source files used for lib_LTLIBRARIES
libsharedlib_la_SOURCES = sharedlib.c

113

CHAPTER 13. MORE EXAMPLES 13.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

C pre-processor flags used for lib_LTLIBRARIES
#libsharedlib_la_CPPFLAGS =

Headers files to be installed in <prefix>/include
include_HEADERS = sharedlib.h

Versioning Libtool Libraries with version triplets
libsharedlib_la_LDFLAGS = -version-info 1:0:0
$ cat debhello-2.0/src/Makefile.am
program executables to be produced
bin_PROGRAMS = hello

source files used for bin_PROGRAMS
hello_SOURCES = hello.c

C pre-processor flags used for bin_PROGRAMS
AM_CPPFLAGS = -I$(srcdir) -I$(top_srcdir)/lib

Extra options for the linker for hello
hello_LDFLAGS =

Libraries the `hello` binary to be linked
hello_LDADD = $(top_srcdir)/lib/libsharedlib.la

configure.ac (v=2.0):
$ cat debhello-2.0/configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello],[2.2],[foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])

AM_INIT_AUTOMAKE([foreign])

Set default to --enable-shared --disable-static
LT_INIT([shared disable-static])

find the libltdl sources in the libltdl sub-directory
LT_CONFIG_LTDL_DIR([libltdl])

choose one
LTDL_INIT([recursive])
#LTDL_INIT([subproject])
#LTDL_INIT([nonrecursive])

Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
Checks for programs.
AC_PROG_CC

only for the recursive case
AC_CONFIG_FILES([Makefile

lib/Makefile
man/Makefile
src/Makefile])

AC_OUTPUT

Let’s package this with the debmake command into multiple packages:

• debhello: type = bin

• libsharedlib1: type = lib

114

CHAPTER 13. MORE EXAMPLES 13.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

• libsharedlib-dev: type = dev

Here, the -b\’,libsharedlib1,libsharedlib-dev’ option is used to specify the generated binary packages.

$ cd /path/to/debhello-2.0
$ debmake -b',libsharedlib1,libsharedlib-dev' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="2.0", rev="1"
I: *** start packaging in "debhello-2.0". ***
I: provide debhello_2.0.orig.tar.gz for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-2.0.tar.gz debhello_2.0.orig.tar.gz
I: pwd = "/path/to/debhello-2.0"
I: parse binary package settings: ,libsharedlib1,libsharedlib-dev
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: binary package=libsharedlib1 Type=lib / Arch=any M-A=same
I: binary package=libsharedlib-dev Type=dev / Arch=any M-A=same
I: analyze the source tree
I: build_type = Autotools with autoreconf
...

The result is similar to “Section 13.8” but with more template files.
Let’s inspect the notable template files generated.
debian/rules (template file, v=2.0):

$ cd /path/to/debhello-2.0
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@ --with autoreconf

#override_dh_install:
dh_install --list-missing -X.la -X.pyc -X.pyo

Let’s make this Debian package better as the maintainer.
debian/rules (maintainer version, v=2.0):

$ cd /path/to/debhello-2.0
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@ --with autoreconf

override_dh_missing:
dh_missing -X.la

debian/control (maintainer version, v=2.0):

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control

115

CHAPTER 13. MORE EXAMPLES 13.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends: debhelper-compat (= 13), dh-autoreconf
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends: libsharedlib1 (= ${binary:Version}),

${misc:Depends},
${shlibs:Depends}

Description: Simple packaging example for debmake
This package contains the compiled binary executable.
.
This Debian binary package is an example package.
(This is an example only)

Package: libsharedlib1
Section: libs
Architecture: any
Multi-Arch: same
Pre-Depends: ${misc:Pre-Depends}
Depends: ${misc:Depends}, ${shlibs:Depends}
Description: Simple packaging example for debmake
This package contains the shared library.

Package: libsharedlib-dev
Section: libdevel
Architecture: any
Multi-Arch: same
Depends: libsharedlib1 (= ${binary:Version}), ${misc:Depends}
Description: Simple packaging example for debmake
This package contains the development files.

debian/*.install (maintainer version, v=2.0):

$ vim debian/copyright
... hack, hack, hack, ...
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

116

CHAPTER 13. MORE EXAMPLES 13.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Since this upstream source creates the proper auto-generated Makefile, there is no need to create debian/install
and debian/manpages files.

There are several other template files under the debian/ directory. These also need to be updated.
Template files under debian/. (v=2.0):

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- debhello.dirs
+-- debhello.doc-base
+-- debhello.docs
+-- debhello.examples
+-- debhello.info
+-- debhello.install
+-- debhello.links
+-- debhello.manpages
+-- gbp.conf
+-- libsharedlib-dev.install
+-- libsharedlib1.install
+-- libsharedlib1.symbols
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 22 files

The rest of the packaging activities are practically the same as the one in “Section 13.8”.
Here are the generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=2.0):

$ dpkg -f debhello-dbgsym_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 2.0-1)
$ dpkg -f debhello_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.0-1), libc6 (>= 2.34)
$ dpkg -f libsharedlib-dev_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.0-1)
$ dpkg -f libsharedlib1-dbgsym_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.0-1)
$ dpkg -f libsharedlib1_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.2.5)

117

CHAPTER 13. MORE EXAMPLES 13.12. CMAKE (MULTI-BINARY PACKAGE)

13.12 CMake (multi-binary package)
Here is an example of creating a set of Debian binary packages including the executable package, the shared
library package, the development file package, and the debug symbol package from a simple C source program
using CMake (CMakeLists.txt and some files such as config.h.in) as its build system.

Let’s assume this upstream tarball to be debhello-2.1.tar.gz.
This type of source is meant to be installed as a non-system file, for example, as:

$ tar -xzmf debhello-2.1.tar.gz
$ cd debhello-2.1
$ mkdir obj-x86_64-linux-gnu
$ cd obj-x86_64-linux-gnu
$ cmake ..
$ make
$ make install

Let’s get the source and make the Debian package.
Download debhello-2.1.tar.gz

$ wget http://www.example.org/download/debhello-2.1.tar.gz
...
$ tar -xzmf debhello-2.1.tar.gz
$ tree
.
+-- debhello-2.1
| +-- CMakeLists.txt
| +-- LICENSE
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- lib
| | +-- CMakeLists.txt
| | +-- sharedlib.c
| | +-- sharedlib.h
| +-- man
| | +-- CMakeLists.txt
| | +-- hello.1
| +-- src
| +-- CMakeLists.txt
| +-- config.h.in
| +-- hello.c
+-- debhello-2.1.tar.gz

6 directories, 14 files

Here, the contents of this source are as follows.
src/hello.c (v=2.1):

$ cat debhello-2.1/src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
sharedlib();
return 0;

}

src/config.h.in (v=2.1):

$ cat debhello-2.1/src/config.h.in
/* name of the package author */
#define PACKAGE_AUTHOR "@PACKAGE_AUTHOR@"

118

CHAPTER 13. MORE EXAMPLES 13.12. CMAKE (MULTI-BINARY PACKAGE)

lib/sharedlib.c and lib/sharedlib.h (v=2.1):

$ cat debhello-2.1/lib/sharedlib.h
int sharedlib();
$ cat debhello-2.1/lib/sharedlib.c
#include <stdio.h>
int
sharedlib()
{

printf("This is a shared library!\n");
return 0;

}

CMakeLists.txt (v=2.1):

$ cat debhello-2.1/CMakeLists.txt
cmake_minimum_required(VERSION 2.8)
project(debhello)
set(PACKAGE_AUTHOR "Osamu Aoki")
add_subdirectory(lib)
add_subdirectory(src)
add_subdirectory(man)
$ cat debhello-2.1/man/CMakeLists.txt
install(
FILES ${CMAKE_CURRENT_SOURCE_DIR}/hello.1
DESTINATION share/man/man1

)
$ cat debhello-2.1/src/CMakeLists.txt
Always define HAVE_CONFIG_H
add_definitions(-DHAVE_CONFIG_H)
Generate config.h from config.h.in
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/config.h.in"
"${CMAKE_CURRENT_BINARY_DIR}/config.h"
)

include_directories("${CMAKE_CURRENT_BINARY_DIR}")
include_directories("${CMAKE_SOURCE_DIR}/lib")

add_executable(hello hello.c)
target_link_libraries(hello sharedlib)
install(TARGETS hello
RUNTIME DESTINATION bin

)

Let’s package this with the debmake command.

$ cd /path/to/debhello-2.1
$ debmake -b',libsharedlib1,libsharedlib-dev' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="2.1", rev="1"
I: *** start packaging in "debhello-2.1". ***
I: provide debhello_2.1.orig.tar.gz for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-2.1.tar.gz debhello_2.1.orig.tar.gz
I: pwd = "/path/to/debhello-2.1"
I: parse binary package settings: ,libsharedlib1,libsharedlib-dev
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: binary package=libsharedlib1 Type=lib / Arch=any M-A=same
I: binary package=libsharedlib-dev Type=dev / Arch=any M-A=same
I: analyze the source tree
I: build_type = Cmake
...

The result is similar to “Section 13.8” but not exactly the same.

119

CHAPTER 13. MORE EXAMPLES 13.12. CMAKE (MULTI-BINARY PACKAGE)

Let’s inspect the notable template files generated.
debian/rules (template file, v=2.1):

$ cd /path/to/debhello-2.1
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@

#override_dh_auto_configure:
dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_TARGET_MULTIARCH)"

Let’s make this Debian package better as the maintainer.
debian/rules (maintainer version, v=2.1):

$ cd /path/to/debhello-2.1
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed
DEB_HOST_MULTIARCH ?= $(shell dpkg-architecture -qDEB_HOST_MULTIARCH)

%:
dh $@

override_dh_auto_configure:
dh_auto_configure -- \

-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_HOST_MULTIARCH)"

debian/control (maintainer version, v=2.1):

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends: cmake, debhelper-compat (= 13)
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends: libsharedlib1 (= ${binary:Version}),

${misc:Depends},
${shlibs:Depends}

Description: Simple packaging example for debmake
This package contains the compiled binary executable.
.
This Debian binary package is an example package.
(This is an example only)

120

CHAPTER 13. MORE EXAMPLES 13.12. CMAKE (MULTI-BINARY PACKAGE)

Package: libsharedlib1
Section: libs
Architecture: any
Multi-Arch: same
Pre-Depends: ${misc:Pre-Depends}
Depends: ${misc:Depends}, ${shlibs:Depends}
Description: Simple packaging example for debmake
This package contains the shared library.

Package: libsharedlib-dev
Section: libdevel
Architecture: any
Multi-Arch: same
Depends: libsharedlib1 (= ${binary:Version}), ${misc:Depends}
Description: Simple packaging example for debmake
This package contains the development files.

debian/*.install (maintainer version, v=2.1):

$ vim debian/copyright
... hack, hack, hack, ...
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

This upstream CMakeList.txt needs to be patched to cope with the multiarch path.
debian/patches/* (maintainer version, v=2.1):

... hack, hack, hack, ...
$ cat debian/libsharedlib1.symbols
libsharedlib.so.1 libsharedlib1 #MINVER#
sharedlib@Base 2.1

Since this upstream source creates the proper auto-generated Makefile, there is no need to create debian/install
and debian/manpages files.

There are several other template files under the debian/ directory. These also need to be updated.
Template files under debian/. (v=2.1):

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ tree -F debian

121

CHAPTER 13. MORE EXAMPLES 13.13. INTERNATIONALIZATION

debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- debhello.dirs
+-- debhello.doc-base
+-- debhello.docs
+-- debhello.examples
+-- debhello.info
+-- debhello.install
+-- debhello.links
+-- debhello.manpages
+-- gbp.conf
+-- libsharedlib-dev.install
+-- libsharedlib1.install
+-- libsharedlib1.symbols
+-- patches/
| +-- 000-cmake-multiarch.patch
| +-- series
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

5 directories, 24 files

The rest of the packaging activities are practically the same as the one in “Section 13.8”.
Here are the generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=2.1):

$ dpkg -f debhello-dbgsym_2.1-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 2.1-1)
$ dpkg -f debhello_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.1-1), libc6 (>= 2.34)
$ dpkg -f libsharedlib-dev_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.1-1)
$ dpkg -f libsharedlib1-dbgsym_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.1-1)
$ dpkg -f libsharedlib1_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.2.5)

13.13 Internationalization
Here is an example of updating the simple upstream C source debhello-2.0.tar.gz presented in “Section 13.11” for
internationalization (i18n) and creating the updated upstream C source debhello-2.0.tar.gz.

In the real situation, the package should already be internationalized. So this example is educational for you to
understand how this internationalization is implemented.

122

CHAPTER 13. MORE EXAMPLES 13.13. INTERNATIONALIZATION

Tip

The routine maintainer activity for the i18n is simply to add translation po files
reported to you via the Bug Tracking System (BTS) to the po/ directory and to
update the language list in the po/LINGUAS file.

Let’s get the source and make the Debian package.
Download debhello-2.0.tar.gz (i18n)

$ wget http://www.example.org/download/debhello-2.0.tar.gz
...
$ tar -xzmf debhello-2.0.tar.gz
$ tree
.
+-- debhello-2.0
| +-- LICENSE
| +-- Makefile.am
| +-- README.md
| +-- configure.ac
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- lib
| | +-- Makefile.am
| | +-- sharedlib.c
| | +-- sharedlib.h
| +-- man
| | +-- Makefile.am
| | +-- hello.1
| +-- src
| +-- Makefile.am
| +-- hello.c
+-- debhello-2.0.tar.gz

6 directories, 14 files

Internationalize this source tree with the gettextize command and remove files auto-generated by Autotools.
run gettextize (i18n):

$ cd /path/to/debhello-2.0
$ gettextize
Creating po/ subdirectory
Creating build-aux/ subdirectory
Copying file ABOUT-NLS
Copying file build-aux/config.rpath
Not copying intl/ directory.
Copying file po/Makefile.in.in
Copying file po/Makevars.template
Copying file po/Rules-quot
Copying file po/boldquot.sed
Copying file po/en@boldquot.header
Copying file po/en@quot.header
Copying file po/insert-header.sin
Copying file po/quot.sed
Copying file po/remove-potcdate.sin
Creating initial po/POTFILES.in
Creating po/ChangeLog
Creating directory m4
Copying file m4/gettext.m4
Copying file m4/iconv.m4
Copying file m4/lib-ld.m4
Copying file m4/lib-link.m4
Copying file m4/lib-prefix.m4

123

CHAPTER 13. MORE EXAMPLES 13.13. INTERNATIONALIZATION

Copying file m4/nls.m4
Copying file m4/po.m4
Copying file m4/progtest.m4
Creating m4/ChangeLog
Updating Makefile.am (backup is in Makefile.am~)
Updating configure.ac (backup is in configure.ac~)
Creating ChangeLog

Please use AM_GNU_GETTEXT([external]) in order to cause autoconfiguration
to look for an external libintl.

Please create po/Makevars from the template in po/Makevars.template.
You can then remove po/Makevars.template.

Please fill po/POTFILES.in as described in the documentation.

Please run 'aclocal' to regenerate the aclocal.m4 file.
You need aclocal from GNU automake 1.9 (or newer) to do this.
Then run 'autoconf' to regenerate the configure file.

You will also need config.guess and config.sub, which you can get from the CV...
of the 'config' project at http://savannah.gnu.org/. The commands to fetch th...
are
$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/conf...
$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/conf...

You might also want to copy the convenience header file gettext.h
from the /usr/share/gettext directory into your package.
It is a wrapper around <libintl.h> that implements the configure --disable-nl...
option.

Press Return to acknowledge the previous 6 paragraphs.
$ rm -rf m4 build-aux *~

Let’s check generated files under the po/ directory.
files in po (i18n):

$ ls -l po
total 60
-rw-rw-r-- 1 osamu osamu 494 Jul 24 10:14 ChangeLog
-rw-rw-r-- 1 osamu osamu 17577 Jul 24 10:14 Makefile.in.in
-rw-rw-r-- 1 osamu osamu 3376 Jul 24 10:14 Makevars.template
-rw-rw-r-- 1 osamu osamu 59 Jul 24 10:14 POTFILES.in
-rw-rw-r-- 1 osamu osamu 2203 Jul 24 10:14 Rules-quot
-rw-rw-r-- 1 osamu osamu 217 Jul 24 10:14 boldquot.sed
-rw-rw-r-- 1 osamu osamu 1337 Jul 24 10:14 en@boldquot.header
-rw-rw-r-- 1 osamu osamu 1203 Jul 24 10:14 en@quot.header
-rw-rw-r-- 1 osamu osamu 672 Jul 24 10:14 insert-header.sin
-rw-rw-r-- 1 osamu osamu 153 Jul 24 10:14 quot.sed
-rw-rw-r-- 1 osamu osamu 432 Jul 24 10:14 remove-potcdate.sin

Let’s update the configure.ac by adding “AM_GNU_GETTEXT([external])”, etc..
configure.ac (i18n):

$ vim configure.ac
... hack, hack, hack, ...
$ cat configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello],[2.2],[foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])

124

CHAPTER 13. MORE EXAMPLES 13.13. INTERNATIONALIZATION

AM_INIT_AUTOMAKE([foreign])

Set default to --enable-shared --disable-static
LT_INIT([shared disable-static])

find the libltdl sources in the libltdl sub-directory
LT_CONFIG_LTDL_DIR([libltdl])

choose one
LTDL_INIT([recursive])
#LTDL_INIT([subproject])
#LTDL_INIT([nonrecursive])

Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
Checks for programs.
AC_PROG_CC

desktop file support required
AM_GNU_GETTEXT_VERSION([0.19.3])
AM_GNU_GETTEXT([external])

only for the recursive case
AC_CONFIG_FILES([Makefile

po/Makefile.in
lib/Makefile
man/Makefile
src/Makefile])

AC_OUTPUT

Let’s create the po/Makevars file from the po/Makevars.template file.
po/Makevars (i18n):

... hack, hack, hack, ...
$ diff -u po/Makevars.template po/Makevars
--- po/Makevars.template 2024-07-24 10:14:46.440850967 +0900
+++ po/Makevars 2024-07-24 10:14:46.520852183 +0900
@@ -18,14 +18,14 @@
or entity, or to disclaim their copyright. The empty string stands for
the public domain; in this case the translators are expected to disclaim
their copyright.
-COPYRIGHT_HOLDER = Free Software Foundation, Inc.
+COPYRIGHT_HOLDER = Osamu Aoki <osamu@debian.org>

This tells whether or not to prepend "GNU " prefix to the package
name that gets inserted into the header of the $(DOMAIN).pot file.
Possible values are "yes", "no", or empty. If it is empty, try to
detect it automatically by scanning the files in $(top_srcdir) for
"GNU packagename" string.
-PACKAGE_GNU =
+PACKAGE_GNU = no

This is the email address or URL to which the translators shall report
bugs in the untranslated strings:
$ rm po/Makevars.template

Let’s update C sources for the i18n version by wrapping strings with _(…).
src/hello.c (i18n):

... hack, hack, hack, ...
$ cat src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>

125

CHAPTER 13. MORE EXAMPLES 13.13. INTERNATIONALIZATION

#include <libintl.h>
#define _(string) gettext (string)
int
main()
{

printf(_("Hello, I am " PACKAGE_AUTHOR "!\n"));
sharedlib();
return 0;

}

lib/sharedlib.c (i18n):

... hack, hack, hack, ...
$ cat lib/sharedlib.c
#include <stdio.h>
#include <libintl.h>
#define _(string) gettext (string)
int
sharedlib()
{

printf(_("This is a shared library!\n"));
return 0;

}

The new gettext (v=0.19) can handle the i18n version of the desktop file directly.
data/hello.desktop.in (i18n):

$ fgrep -v '[ja]=' data/hello.desktop > data/hello.desktop.in
$ rm data/hello.desktop
$ cat data/hello.desktop.in
[Desktop Entry]
Name=Hello
Comment=Greetings
Type=Application
Keywords=hello
Exec=hello
Terminal=true
Icon=hello.png
Categories=Utility;

Let’s list the input files to extract translatable strings in po/POTFILES.in.
po/POTFILES.in (i18n):

... hack, hack, hack, ...
$ cat po/POTFILES.in
src/hello.c
lib/sharedlib.c
data/hello.desktop.in

Here is the updated root Makefile.am with po added to the SUBDIRS environment variable.
Makefile.am (i18n):

$ cat Makefile.am
recursively process `Makefile.am` in SUBDIRS
SUBDIRS = po lib src man

ACLOCAL_AMFLAGS = -I m4

EXTRA_DIST = build-aux/config.rpath m4/ChangeLog

Let’s make a translation template file, debhello.pot.
po/debhello.pot (i18n):

$ xgettext -f po/POTFILES.in -d debhello -o po/debhello.pot -k_
$ cat po/debhello.pot
SOME DESCRIPTIVE TITLE.

126

CHAPTER 13. MORE EXAMPLES 13.13. INTERNATIONALIZATION

Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2024-07-24 10:14+0900\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"Language: \n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"

#: src/hello.c:9
#, c-format
msgid "Hello, I am "
msgstr ""

#: lib/sharedlib.c:7
#, c-format
msgid "This is a shared library!\n"
msgstr ""

#: data/hello.desktop.in:3
msgid "Hello"
msgstr ""

#: data/hello.desktop.in:4
msgid "Greetings"
msgstr ""

#: data/hello.desktop.in:6
msgid "hello"
msgstr ""

Let’s add a translation for French.
po/LINGUAS and po/fr.po (i18n):

$ echo 'fr' > po/LINGUAS
$ cp po/debhello.pot po/fr.po
$ vim po/fr.po
... hack, hack, hack, ...
$ cat po/fr.po
SOME DESCRIPTIVE TITLE.
This file is put in the public domain.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
msgid ""
msgstr ""
"Project-Id-Version: debhello 2.2\n"
"Report-Msgid-Bugs-To: foo@example.org\n"
"POT-Creation-Date: 2015-03-01 20:22+0900\n"
"PO-Revision-Date: 2015-02-21 23:18+0900\n"
"Last-Translator: Osamu Aoki <osamu@debian.org>\n"
"Language-Team: French <LL@li.org>\n"
"Language: ja\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"

127

CHAPTER 13. MORE EXAMPLES 13.14. DETAILS

#: src/hello.c:34
#, c-format
msgid "Hello, my name is %s!\n"
msgstr "Bonjour, je m'appelle %s!\n"

#: lib/sharedlib.c:29
#, c-format
msgid "This is a shared library!\n"
msgstr "Ceci est une bibliothèque partagée!\n"

#: data/hello.desktop.in:3
msgid "Hello"
msgstr ""

#: data/hello.desktop.in:4
msgid "Greetings"
msgstr "Salutations"

#: data/hello.desktop.in:6
msgid "hello"
msgstr ""

#: data/hello.desktop.in:9
msgid "hello.png"
msgstr ""

The packaging activities are practically the same as the one in “Section 13.11”.
You can find more i18n examples by following “Section 13.14”.

13.14 Details
Actual details of the examples presented and their variants can be obtained by the following.

How to get details

$ apt-get source debmake-doc
$ cd debmake-doc*
$ cd examples
$ view examples/README.md

Follow the exact instruction in examples/README.md.

$ cd examples
$ make

Now, each directory named as examples/debhello-?.?_build-? contains the Debian packaging example.

• emulated console command line activity log: the .log file

• emulated console command line activity log (short): the .slog file

• snapshot source tree image after the debmake command: the debmake directory

• snapshot source tree image after proper packaging: the packge directory

• snapshot source tree image after the debuild command: the test directory

Notable examples are:

• the POSIX shell script with Makefile with i18n (v=3.0),

• the C source with Makefile.in + configure with i18n (v=3.2),

• the C source with Autotools with i18n with i18n (v=3.3), and

• the C source with CMake with i18n (v=3.4).

128

Chapter 14

debmake(1) manpage

14.1 NAME
debmake - program to make a Debian source package

14.2 SYNOPSIS
debmake [-h] [-c | -k] [-n | -a package-version.orig.tar.gz | -d | -t] [-p package] [-u version] [-r revision] [-z
extension] [-b ”binarypackage[:type], …]” [-e foo@example.org] [-f ”firstname lastname”] [-i ”buildtool” | -j] [-l
license_file] [-m] [-o file] [-q] [-s] [-v] [-w ”addon, … ”] [-x [01234]] [-y] [-L] [-P] [-T]

14.3 DESCRIPTION
debmake helps to build a Debian package from the upstream source. Normally, this is done as follows:

• The upstream tarball is downloaded as the package-version.tar.gz file.

• It is untarred to create many files under the package-version/ directory.

• debmake is invoked in the package-version/ directory, possibly without any arguments.

• Files in the package-version/debian/ directory are manually adjusted.

• dpkg-buildpackage (usually from its wrapper debuild or sbuild) is invoked in the package-version/ direc-
tory to make Debian packages.

Make sure to protect the arguments of the -b, -f, -l, and -w options from shell interference by quoting them
properly.

14.3.1 optional arguments:

-h, --help show this help message and exit.

-c, --copyright scan source for copyright+license text and exit.

• -c: simple output style
• -cc: normal output style (similar to the debian/copyright file)
• -ccc: debug output style

-k, --kludge compare the debian/copyright file with the source and exit.
The debian/copyright file must be organized to list the generic file patterns before the specific exceptions.

• -k: basic output style
• -kk: verbose output style

129

CHAPTER 14. DEBMAKE(1) MANPAGE 14.3. DESCRIPTION

-n, --native make a native Debian source package without .orig.tar.gz. This makes a Debian source format “3.0
(native)” package.
If you are thinking of packaging a Debian-specific source tree with debian/ in it into a native Debian package,
please think otherwise. You can use the “debmake -d -i debuild” or “debmake -t -i debuild” commands
to make a Debian non-native package using the Debian source format “3.0 (quilt)” The only difference is
that the debian/changelog file must use the non-native version scheme: version-revision. The non-native
package is more friendly to downstream distributions.

-a package-version.tar.gz, --archive package-version.tar.gz use the upstream source tarball directly. (-p, -u, -z:
overridden)
The upstream tarball may be specified as package_version.orig.tar.gz and tar.gz. For other cases, it may be
tar.bz2, or tar.xz.
If the specified upstream tarball name contains uppercase letters, the Debian package name is generated by
converting them to lowercase letters.
If the specified argument is the URL (http://, https://, or ftp://) to the upstream tarball, the
upstream tarball is downloaded from the URL using wget or curl.

-d, --dist run the “make dist” command equivalents first to generate the upstream tarball and use it.
The “debmake -d” command is designed to run in the package/ directory hosting the upstream VCS with
the build system supporting the “make dist” command equivalents. (automake/autoconf, …)

-t, --tar run the “tar” command to generate the upstream tarball and use it.
The “debmake -t” command is designed to run in the package/ directory hosting the upstream VCS. Unless
you provide the upstream version with the -u option or with the debian/changelog file, a snapshot upstream
version is generated in the 0\~%y%m%d%H%M format, e.g., 0~1403012359, from the UTC date and
time. The generated tarball excludes the debian/ directory found in the upstream VCS. (It also excludes
typical VCS directories: .git/, .hg/, .svn/, .CVS/.)

-p package, --package package set the Debian package name.

-u version, --upstreamversion version set the upstream package version.

-r revision, --revision revision set the Debian package revision.

-z extension, --targz extension set the tarball type, extension=(tar.gz|tar.bz2|tar.xz). (alias: z, b, x)

-b ”binarypackage[:type],… ”, --binaryspec ”binarypackage[:type],… ” set the binary package specs by a comma
separated list of binarypackage:type pairs. Here, binarypackage is the binary package name, and the optional
type is chosen from the following type values:

• bin: C/C++ compiled ELF binary code package (any, foreign) (default, alias: ””, i.e., null-string)
• data: Data (fonts, graphics, …) package (all, foreign) (alias: da)
• dev: Library development package (any, same) (alias: de)
• doc: Documentation package (all, foreign) (alias: do)
• lib: Library package (any, same) (alias: l)
• perl: Perl script package (all, foreign) (alias: pl)
• python3: Python (version 3) script package (all, foreign) (alias: py3, python, py)
• ruby: Ruby script package (all, foreign) (alias: rb)
• nodejs: Node.js based JavaScript package (all, foreign) (alias: js)
• script: Shell and other interpretted language script package (all, foreign) (alias: sh)

The pair values in the parentheses, such as (any, foreign), are the Architecture and Multi-Arch stanza
values set in the debian/control file. In many cases, the debmake command makes good guesses for type
from binarypackage. If type is not obvious, type is set to bin.
Here are examples for typical binary package split scenarios where the upstream Debian source package
name is foo:

• Generating an executable binary package foo:

130

CHAPTER 14. DEBMAKE(1) MANPAGE 14.3. DESCRIPTION

– “-b’foo:bin’”, or its short form ̀-b’-’ ̀”, or no -b option
• Generating an executable (python3) binary package python3-foo:

– “-b’python3-foo:py’”, or its short form “-b’python3-foo’”
• Generating a data package foo:

– “-b’foo:data’”, or its short form “-b’-:data’”
• Generating a executable binary package foo and a documentation one foo-doc:

– “-b’foo:bin,foo-doc:doc’”, or its short form “-b’-:-doc’”
• Generating a executable binary package foo, a library package libfoo1, and a library development pack-

age libfoo-dev:
– “-b’foo:bin,libfoo1:lib,libfoo-dev:dev’” or its short form “-b’-,libfoo1,libfoo-dev’”

If the source tree contents do not match settings for type, the debmake command warns you.

-e foo@example.org, --email foo@example.org set e-mail address.
The default is taken from the value of the environment variable $DEBEMAIL.

-f ”firstname lastname”, --fullname ”firstname lastname” set the fullname.
The default is taken from the value of the environment variable $DEBFULLNAME.

-i ”buildtool”, --invoke ”buildtool” invoke ”buildtool” at the end of execution. buildtool may be “dpkg-buildpackage”,
“debuild”, “sbuild”, etc.
The default is not to execute any program.
Setting this option automatically sets the --local option.

-j, --judge run dpkg-depcheck to judge build dependencies and identify file paths. Log files are in the parent
directory.

• package.build-dep.log: Log file for dpkg-depcheck.
• package.install.log: Log file recording files in the debian/tmp directory.

-l ”license_file,… ”, --license ”license_file,… ” add formatted license text to the end of the debian/copyright file
holding license scan results.
The default is to add COPYING and LICENSE, and license_file needs to list only the additional file names
all separated by “,”.

-m, --monoarch force packages to be non-multiarch.

-o file, --option file read optional parameters from file. (This is not for everyday use.)
The content of file is sourced as the Python code at the end of para.py. For example, the package description
can be specified by the following file.

para['desc'] = 'program short description'
para['desc_long'] = '''\
program long description which you wish to include.
.
Empty line is space + .
You keep going on ...
'''

-q, --quitearly quit early before creating files in the debian/ directory.

-s, --spec use upstream spec (pyproject.py for Python, etc.) for the package description.

-v, --version show version information.

131

CHAPTER 14. DEBMAKE(1) MANPAGE 14.4. EXAMPLES

-w ”addon,… ”, --with ”addon,… ” add extra arguments to the --with option of the dh(1) command as addon in
debian/rules.
The addon values are listed all separated by “,”, e.g., “-w ”python3,autoreconf””.
For Autotools based packages, autoreconf as addon to run “autoreconf -i -v -f” for every package building
is default behavior of the dh(1) command.
For Autotools based packages, if they install Python (version 3) programs, setting python3 as addon to the
debmake command argument is needed since this is non-obvious. But for pyproject.toml based Python
packages, setting python3 as addon to the debmake command argument is not needed since this is obvious
and the debmake command automatically set it to the dh(1) command.

-x n, --extra n generate configuration files as templates. (Please note debian/changelog, debian/control, de-
bian/copyright, and debian/rules are bare minimum configuration files to build a Debian binary package.)
The number n determines which configuration templates are generated.

• -x0: all required configuration template files. (selected option if any of these files already exist)
• -x1: all -x0 files + desirable configuration template files with binary package type supports.
• -x2: all -x1 files + normal configuration template files with maintainer script supports.
• -x3: all -x2 files + optional configuration template files. (default optuin)
• -x4: all -x3 files + deprecated configuration template files.

Some configuration template files are generated with the extra .ex suffix to ease their removal. To activate
these, rename their file names to the ones without the .ex suffix and edit their contents. Existing configuration files
are never overwritten. If you wish to update some of the existing configuration files, please rename them before
running the debmake command and manually merge the generated configuration files with the old renamed ones.

-y, --yes “force yes” for all prompts. (without option: “ask [Y/n]”; doubled option: “force no”)

-L, --local generate configuration files for the local package to fool lintian(1) checks.

-P, --pedantic pedantically check auto-generated files.

-T, --tutorial output tutorial comment lines in template files. default when -x3 or -x4 is set.

14.4 EXAMPLES
For a well behaving source, you can build a good-for-local-use installable single Debian binary package easily
with one command. Test install of such a package generated in this way offers a good alternative to the traditional
“make install” command installing into the /usr/local directory since the Debian package can be removed cleanly
by the “dpkg -P ’… ’” command. Here are some examples of how to build such test packages. (These should work
in most cases. If the -d option does not work, try the -t option instead.)

For a typical C program source tree packaged with autoconf/automake:

• debmake -d -i debuild

For a typical Python (version 3) module source tree:

• debmake -s -d -b”:python3” -i debuild

For a typical Python (version 3) module in the package-version.tar.gz archive:

• debmake -s -a package-version.tar.gz -b”:python3” -i debuild

For a typical Perl module in the package-version.tar.gz archive:

• debmake -a package-version.tar.gz -b”:perl” -i debuild

132

CHAPTER 14. DEBMAKE(1) MANPAGE 14.5. HELPER PACKAGES

14.5 HELPER PACKAGES
Packaging may require installation of some additional specialty helper packages.

• Python (version 3) programs may require the pybuild-plugin-pyproject package.

• The Autotools (autoconf + automake) build system may require autotools-dev or dh-autoreconf package.

• Ruby programs may require the gem2deb package.

• Node.js based JavaScript programs may require the pkg-js-tools package.

• Java programs may require the javahelper package.

• Gnome programs may require the gobject-introspection package.

• etc.

14.6 CAVEAT
Although debmake is meant to provide template files for the package maintainer to work on, actual packaging
activities are often performed without using debmake while referencing only existing similar packages and “Debian
Policy Manual”. All template files generated by debmake are required to be modified manually.

There are 2 positive points for debmake:

• debmake helps to write terse packaging tutorial “Guide for Debian Maintainers” (debmake-doc package).

• debmake provides short extracted license texts as debian/copyright in decent accuracy to help license re-
view.

Please double check copyright with the licensecheck(1) command.
There are some limitations for what characters may be used as a part of the Debian package. The most no-

table limitation is the prohibition of uppercase letters in the package name. Here is a summary as a set of regular
expressions:

• Upstream package name (-p): [-+.a-z0-9]{2,}

• Binary package name (-b): [-+.a-z0-9]{2,}

• Upstream version (-u): [0-9][-+.:~a-z0-9A-Z]*

• Debian revision (-r): [0-9][+.~a-z0-9A-Z]*

See the exact definition in “Chapter 5 - Control files and their fields” in the “Debian Policy Manual”.
debmake assumes relatively simple packaging cases. So all programs related to the interpreter are assumed to

be “Architecture: all”. This is not always true.

14.7 DEBUG
Please report bugs to the debmake package using the reportbug command.

The character set in the environment variable $DEBUG determines the logging output level.

• i: main.py logging

• p: para.py logging

• s: checkdep5.py check_format_style() logging

• y: checkdep5.py split_years_name() logging

• b: checkdep5.py parse_lines() 1 logging — content_state scan loop: begin-loop

• m: checkdep5.py parse_lines() 2 logging — content_state scan loop: after regex match

• e: checkdep5.py parse_lines() 3 logging — content_state scan loop: end-loop

133

https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/manuals/debmake-doc/
https://www.debian.org/doc/debian-policy/#document-ch-controlfields

CHAPTER 14. DEBMAKE(1) MANPAGE 14.8. AUTHOR

• a: checkdep5.py parse_lines() 4 logging — print author/translator section text

• f: checkdep5.py check_all_license() 1 logging — input filename for the copyright scan

• l: checkdep5.py check_all_license() 2 logging — print license section text

• c: checkdep5.py check_all_license() 3 logging — print copyright section text

• k: checkdep5.py check_all_license() 4 logging — sort key for debian/copyright stanza

• r: sed.py logging

• w: cat.py logging

• n: kludge.py logging (“debmake -k”)

Use this feature as:

$ DEBUG=ipsybmeaflckrwn debmake ...

See README.developer in the source for more.

14.8 AUTHOR
Copyright © 2014-2024 Osamu Aoki <osamu@debian.org>

14.9 LICENSE
Expat License

14.10 SEE ALSO
The debmake-doc package provides the “Guide for Debian Maintainers” in plain text, HTML and PDF formats
under the /usr/share/doc/debmake-doc/ directory.

See also dpkg-source(1), deb-control(5), debhelper(7), dh(1), dpkg-buildpackage(1), debuild(1), quilt(1),
dpkg-depcheck(1), sbuild(1), gbp-buildpackage(1), and gbp-pq(1) manpages.

134

mailto:osamu@debian.org
https://www.debian.org/doc/manuals/debmake-doc/

Chapter 15

debmake options

Here are some additional explantion for debmake options.

15.1 Shortcut options (-a, -i)
The debmake command offers 2 shortcut options.

• -a : open the upstream tarball

• -i : execute script to build the binary package

The example in the above “Chapter 5” can be done simply as follows.

$ debmake -a package-1.0.tar.gz -i debuild

Tip

A URL such as “https://www.example.org/DL/package-1.0.tar.gz” may be used
for the -a option.

Tip

A URL such as “https://arm.koji.fedoraproject.org/packages/ibus/1.5.7/-
3.fc21/src/ibus-1.5.7-3.fc21.src.rpm” may be used for the -a option, too.

15.2 debmake -b
The debmake command with the -b option provides an intuitive and flexible method to create the initial template
debian/control file defining the split of the Debian binary packages with following stanzas:

• Package:

• Architecture: (e.g. amd64)

• Multi-Arch: (see “Section 9.10”)

• Depends:

• Pre-Depends:

135

https://www.example.org/DL/package-1.0.tar.gz
https://arm.koji.fedoraproject.org/packages/ibus/1.5.7/3.fc21/src/ibus-1.5.7-3.fc21.src.rpm
https://arm.koji.fedoraproject.org/packages/ibus/1.5.7/3.fc21/src/ibus-1.5.7-3.fc21.src.rpm

CHAPTER 15. DEBMAKE OPTIONS 15.3. DEBMAKE -CC

The debmake command also sets an appropriate set of substvars used in each pertinent dependency stanza.
Let’s quote the pertinent part from the debmake manpage here.

-b ”binarypackage[:type],… ”, --binaryspec ”binarypackage[:type],… ” set the binary package specs by a comma
separated list of binarypackage:type pairs. Here, binarypackage is the binary package name, and the optional
type is chosen from the following type values:

• bin: C/C++ compiled ELF binary code package (any, foreign) (default, alias: ””, i.e., null-string)
• data: Data (fonts, graphics, …) package (all, foreign) (alias: da)
• dev: Library development package (any, same) (alias: de)
• doc: Documentation package (all, foreign) (alias: do)
• lib: Library package (any, same) (alias: l)
• perl: Perl script package (all, foreign) (alias: pl)
• python3: Python (version 3) script package (all, foreign) (alias: py3, python, py)
• ruby: Ruby script package (all, foreign) (alias: rb)
• nodejs: Node.js based JavaScript package (all, foreign) (alias: js)
• script: Shell and other interpretted language script package (all, foreign) (alias: sh)

The pair values in the parentheses, such as (any, foreign), are the Architecture and Multi-Arch stanza
values set in the debian/control file. In many cases, the debmake command makes good guesses for type
from binarypackage. If type is not obvious, type is set to bin.
Here are examples for typical binary package split scenarios where the upstream Debian source package
name is foo:

• Generating an executable binary package foo:
– “-b’foo:bin’”, or its short form ̀-b’-’ ̀”, or no -b option

• Generating an executable (python3) binary package python3-foo:
– “-b’python3-foo:py’”, or its short form “-b’python3-foo’”

• Generating a data package foo:
– “-b’foo:data’”, or its short form “-b’-:data’”

• Generating a executable binary package foo and a documentation one foo-doc:
– “-b’foo:bin,foo-doc:doc’”, or its short form “-b’-:-doc’”

• Generating a executable binary package foo, a library package libfoo1, and a library development pack-
age libfoo-dev:

– “-b’foo:bin,libfoo1:lib,libfoo-dev:dev’” or its short form “-b’-,libfoo1,libfoo-dev’”

If the source tree contents do not match settings for type, the debmake command warns you.

15.3 debmake -cc
The debmake command with the -cc option can make a summary of the copyright and license for the entire source
tree to standard output.

$ tar -xvzf package-1.0.tar.gz
$ cd package-1.0
$ debmake -cc | less

With the -c option, this provides shorter report.

136

CHAPTER 15. DEBMAKE OPTIONS 15.4. SNAPSHOT UPSTREAM TARBALL (-D, -T)

15.4 Snapshot upstream tarball (-d, -t)
This test building scheme is good for the git repository organized as described in gbp-buildpackage(7) which uses
the master, upstream, and pristine-tar branches.

The upstream snapshot from the upstream source tree in the upstream VCS can be made with the -d option if
the upstream supports the “make dist” equivalence.

$ cd /path/to/upstream-vcs
$ debmake -d -i debuild

Alternatively, the same can be made with the -t option if the upstream tarball can be made with the tar command.

$ cd /path/to/upstream-vcs
$ debmake -p package -t -i debuild

Unless you provide the upstream version with the -u option or with the debian/changelog file, a snapshot
upstream version is generated in the 0~%y%m%d%H%M format, e.g., 0~1403012359, from the UTC date and
time.

If the upstream VCS is hosted in the package/ directory instead of the upstream-vcs/ directory, the “-p package”
can be skipped.

If the upstream source tree in the VCS contains the debian/* files, the debmake command with either the -d
option or the -t option combined with the -i option automates the making of a non-native Debian package from the
VCS snapshot while using these debian/* files.

$ cp -r /path/to/package-0~1403012359/debian/. /path/to/upstream-vcs/debian
$ dch
... update debian/changelog

$ git add -A .; git commit -m "vcs with debian/*"
$ debmake -t -p package -i debuild

This non-native Debian binary package building scheme without the real upstream tarball is considered as the
quasi-native Debian package. See “Section 10.13”.

15.5 debmake -j
This is an experimental feature.

The generation of a functioning multi-binary package always requires more manual work than that of a func-
tioning single binary package. The test build of the source package is the essential part of it.

For example, let’s package the same package-1.0.tar.gz (see “Chapter 5”) into a multi binary package.

• Invoke the debmake command with the -j option for the test building and the report generation.

$ debmake -j -a package-1.0.tar.gz

• Check the last lines of the package.build-dep.log file to judge build dependencies for Build-Depends. (You
do not need to list packages used by debhelper, perl, or fakeroot explicitly in Build-Depends. This tech-
nique is useful for the generation of a single binary package, too.)

• Check the contents of the package.install.log file to identify the install paths for files to decide how you split
them into multiple packages.

• Start packaging with the debmake command.

$ rm -rf package-1.0
$ tar -xvzf package-1.0.tar.gz
$ cd package-1.0
$ debmake -b"package1:type1, ..."

• Update debian/control and debian/binarypackage.install files using the above information.

• Update other debian/* files as needed.

• Build the Debian package with the debuild command or its equivalent.

137

CHAPTER 15. DEBMAKE OPTIONS 15.6. DEBMAKE -K

$ debuild

• All binary package entries specified in the debian/binarypackage.install file are generated as binarypackage_version-
revision_arch.deb.

Note

The -j option for the debmake command invokes dpkg-depcheck(1) to run de-
bian/rules under strace(1) to obtain library dependencies. Unfortunately, this
is very slow. If you know the library package dependencies from other sources
such as the SPEC file in the source, you may just run the ”debmake … ” com-
mand without the -j option and run the “debian/rules install” command to check
the install paths of the generated files.

15.6 debmake -k
This is an experimental feature.

When updating a package for the new upstream release, the debmake command can verify the content of the
existing debian/copyright file against the copyright and license situation of the entire updated source tree.

$ cd package-vcs
$ gbp import-orig --uscan --pristine-tar
... update source with the new upstream release
$ debmake -k | less

The “debmake -k” command parses the debian/copyright file from the top to the bottom and compares the
license of all the non-binary files in the current package with the license described in the last matching file pattern
entry of the debian/copyright file.

When editing the auto-generated debian/copyright file, please make sure to keep the generic file patterns at
the top of the list.

Tip

For all new upstream releases, run the “debmake -k” command to ensure that
the debian/copyright file is current.

15.7 debmake -P
The debmake command invoked with the -P option pedantically checks auto-generated files for copyright+license
text even if they are with permissive license.

This option affects not only the content of the debian/copyright file generated by normal execution, but also
the output by the execution with the -k, -c, -cc, and -ccc options.

15.8 debmake -T
The debmake command invoked with the -T option additionally prints verbose tutorial comment lines. The lines
marked with ### in the template files are part of the verbose tutorial comment lines.

138

CHAPTER 15. DEBMAKE OPTIONS 15.9. DEBMAKE -X

15.9 debmake -x
The amount of template files generated by the debmake command depends on the -x[01234] option.

• See “Section 13.1” for cherry-picking of the template files.

Note

None of the existing configuration files are modified by the debmake command.

139

	Preface
	Overview
	Prerequisites
	People around Debian
	How to contribute
	Social dynamics of Debian
	Technical reminders
	Debian documentation
	Help resources
	Archive situation
	Contribution approaches
	Novice contributor and maintainer

	Tool Setups
	Email setup
	mc setup
	git setup
	quilt setup
	devscripts setup
	sbuild setup
	Persistent chroot setup
	gbp setup
	HTTP proxy
	Private Debian repository
	Virtual machines
	Local network with virtual machines

	Simple packaging
	Packaging tarball
	Big picture
	What is debmake?
	What is debuild?
	Step 1: Get the upstream source
	Step 2: Generate template files with debmake
	Step 3: Modification to the template files
	Step 4: Building package with debuild
	Step 3 (alternatives): Modification to the upstream source
	Patch by “diff -u” approach
	Patch by dquilt approach
	Patch by “dpkg-source --auto-commit” approach

	Basics for packaging
	Packaging workflow
	debhelper package
	Package name and version
	Native Debian package
	debian/rules file
	debian/control file
	debian/changelog file
	debian/copyright file
	debian/patches/* files
	debian/source/include-binaries file
	debian/watch file
	debian/upstream/signing-key.asc file
	debian/salsa-ci.yml file
	Other debian/* files

	Sanitization of the source
	Fix with Files-Excluded
	Fix with “debian/rules clean”
	Fix with extend-diff-ignore
	Fix with tar-ignore
	Fix with “git clean -dfx”

	More on packaging
	Package customization
	Customized debian/rules
	Variables for debian/rules
	New upstream release
	Manage patch queue with dquilt
	Build commands
	Note on sbuild
	Special build cases
	Upload orig.tar.gz
	Skipped uploads
	Bug reports

	Advanced packaging
	Historical perspective
	Current trends
	Note on build system
	Continuous integration
	Bootstrapping
	Compiler hardening
	Reproducible build
	Substvar
	Library package
	Multiarch
	Split of a Debian binary package
	Package split scenario and examples
	Multiarch library path
	Multiarch header file path
	Multiarch *.pc file path
	Library symbols
	Library package name
	Library transition
	binNMU safe
	Debugging information
	-dbgsym package
	debconf

	Packaging with git
	Salsa repository
	Salsa account setup
	Salsa CI service
	Branch names
	Patch unapplied Git repository
	Patch applied Git repository
	Note on gbp
	Note on dgit
	Patch by “gbp-pq” approach
	Manage patch queue with gbp-pq
	gbp import-dscs --debsnap
	Note on dgit-maint-debrebase workflow
	Quasi-native Debian packaging

	Tips
	Build under UTF-8
	UTF-8 conversion
	Hints for Debugging

	Tool usages
	debdiff
	dget
	mk-origtargz
	origtargz
	git deborig
	dpkg-source -b
	dpkg-source -x
	debc
	piuparts
	bts

	More Examples
	Cherry-pick templates
	No Makefile (shell, CLI)
	Makefile (shell, CLI)
	pyproject.toml (Python3, CLI)
	Makefile (shell, GUI)
	pyproject.toml (Python3, GUI)
	Makefile (single-binary package)
	Makefile.in + configure (single-binary package)
	Autotools (single-binary package)
	CMake (single-binary package)
	Autotools (multi-binary package)
	CMake (multi-binary package)
	Internationalization
	Details

	debmake(1) manpage
	NAME
	SYNOPSIS
	DESCRIPTION
	optional arguments:

	EXAMPLES
	HELPER PACKAGES
	CAVEAT
	DEBUG
	AUTHOR
	LICENSE
	SEE ALSO

	debmake options
	Shortcut options (-a, -i)
	debmake -b
	debmake -cc
	Snapshot upstream tarball (-d, -t)
	debmake -j
	debmake -k
	debmake -P
	debmake -T
	debmake -x

